
- •12. Логика предикатов
- •13. Алгебра предикатов, основные понятия и определения, логические операции.
- •14. Законы алгебры предикатов.
- •15. Пнф. Алгоритм приведения к пнф.
- •16. Ссф. Алгоритм скалема.
- •17. Исчисление предикатов. Вводные замечания, интерпретация формул.
- •18. Правило вывода в исчислении предикатов.
- •19. Правило подстановки в исчислении предикатов.
- •20. Правило введения и удаления кванторов.
- •27. Реляционная алгебра.
- •29.Бинарные операторы.
- •30. Правила реляционной алгебры.
- •31. Реляционное исчисление. Переменные кортежи, переменные домены.
- •32. Реляционное исчисление с переменными кортежами.
- •33. Формирование запросов и запись операций реляционной алгебры на языке реляционного исчисления с переменными кортежами.
- •34.Представление о компьютерных языках реляционной логики.
- •35. Нечеткая логика основные понятия.
- •36. Нечеткие множества, степень принадлежности, методы ее построения.
- •37. Операции над нечеткими множествами.
- •38. Алгебраические операции на нечетких множествах.
- •39. Расстояния между нечеткими множествами, индексы нечеткости.
- •40. Нечеткие отношения и операции над ними.
- •41. Композиция нечетких отношений.
- •42. Нечеткая и лингвистическая переменные.
- •43. Нечеткие высказывания и предикаты.
- •45. Рекурсивные функции, понятие вычислимой функции.
- •46. Операции примитивной рекурсии и минимизации.
- •47. Примитивно рекурсивные, частично рекурсивные и общерекурсивные функции. Тезис Черча.
- •48. Понятие о машине Тьюринга. Тезис Тьюринга.
- •50. Неразрешимые алгоритмические проблемы.
47. Примитивно рекурсивные, частично рекурсивные и общерекурсивные функции. Тезис Черча.
Если значения функции найдены не для всех значений области определения, то её называют частично рекурсивной функцией и, наоборот, если они найдены для всех значений области определения, то её называют общерекурсивной функцией.
Функции, для вычисления значений которых использовали базовые функции и операторы суперпозиции и примитивной рекурсии, называют примитивно рекурсивными функциями.
При задании примитивно рекурсивного описания функции f(x), зависящей от одной независимой переменной, схема примитивной рекурсии имеет вид:
Любая частично рекурсивная функция является вычислимой.
48. Понятие о машине Тьюринга. Тезис Тьюринга.
Машина Тьюринга (МТ) — математическая абстракция, представляющая вычислительную машину общего вида. Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Машина Тьюринга является расширением модели конечного автомата и способна имитировать (при наличии соответствующей программы) любую машину, действие которой заключается в переходе от одного дискретного состояния к другому.
В состав Машины Тьюринга входит бесконечная в обе стороны лента, разделённая на ячейки, и управляющее устройство с конечным числом состояний.
Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.
В управляющем устройстве содержится таблица переходов, которая представляет алгоритм, реализуемый данной Машиной Тьюринга. Каждое правило из таблицы предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния Машины Тьюринга могут быть помечены как терминальные, и переход в любое из них означает конец работы, остановку алгоритма.
Машина Тьюринга называется детерминированной, если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила, и недетерминированной в противном случае.
Тезис Тьюринга - принимаемое без доказательства фундаментальное положение теории алгоритмов, согласно которому всякий алгоритм представим в форме машины Тьюринга.
50. Неразрешимые алгоритмические проблемы.