Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Zadachnik_po_genetike

.pdf
Скачиваний:
382
Добавлен:
28.03.2015
Размер:
5.38 Mб
Скачать

115. Условия задачи:

По условиям пункта / ясен генотип больного мужчины — XhY. Так как женщина не страдает гемофилией, у нее обязательно должен быть доминантный ген «нормы» — Хн. Второй ген женщины также доминантный п), в противном случае были бы больные дети. Следовательно, генотип женщины ХцХн. Генотипы детей от такого брака:

Иначе говоря, все мальчики будут здоровы, гена гемофилии у них не будет, а все девочки будут гетерозиготными — в рецессиве у них будет ген гемофилии. Если все мальчики впоследствии вступят в брак со здоровыми в отношении гемофилии лицами ИХН\ гемофилия у внуков не проявится. Если дочери НХ^ вступят в брак со здоровыми мужчинами н Y), вероятность проявления гемофилии у внуков будет равна 1/4, или 25%. По полу это будут мальчики:

По условиям задачи оба родителя нормальны следовательно, у них

обязательно есть по доминантному геНу из каждой пары: Хн и А. Сын имеет обе аномалии, его генотип XhYaa. X-хромосому с геном гемофилии он мог унаследовать только от матери. Один из генов альбинизма сьш получил от матери, другой — от отца. Таким образом, гено1ИП матери XHXhAa, генотип отца XHYAa. При таком браке вероятны генотипы детей:

По условиям пункта 2 в брак вступает больной мужчина (генотип XhY) с женщиной, не страдающей болезнью. Следовательно, у женщины один ген обязательно «норма» — Хн. Но второй ген из этой пары у нее должен быть геном гемофилии — xh, так как отец этой женщины страдал гемофилией, а женщина получает всегда одну Л"-хромосому от матери, вторую — от отца. Генотип женщины — XHXh. Вероятность рождения здоровых детей в этой семье равна ½.

Можно решить иначе. Вероятность того, что следующий ребенок будет сыном, равна 1/2. Вероятность того, что ребенок унаследует гемофилию, тоже равна 1/2. Вероятность рождения детей с альбинизмом у гетерозиготных родителей равна 1/4. Для вычисления окончательного результата все вероятности перемножаются: 1/2 х 1/2 х 1/4 = 1/16.

119. В условиях задачи ген гипертрихоза обозначим буквой Z, находящейся в F-хромосоме, в Х-хромосоме нет гена, аллельного гипертрихозу:

Так как отец имел гипертрихоз и был пятипалым, его генотип X Yzaa. У матери не было гипертрихоза (и не могло быть — нет У-хромосомы), но она была шестипалой. Следовательно, у нее должен быть хотя бы один ген шестипалости — А. В этой семье родилась нормальная девочка. Ее генотип ХХаа. Один ген пятипалости она получила от отца, а второй ген пятипалости могла получить только от матери. На основе этого решаем, что мать была гетерозиготна по гену шестипалости. Ее генотип XXАа. Вероятные генотипы детей:

ясно, что скрещивались гомозиготные особи сс1с1' и cV' При скрещивании полученных гибридов происходит расщеп пение по фенотипу в отношении: один шиншилловый, два светлосерых, один гималайский:

Количественные соотношения в потомстве (51:99:48) лишь подтверждают правильность решения.

Пункт 2 решается такими же рассуждениями.

По пункту 3 надо подбирать генотипы родителей. Кролики окраски дикого типа могут иметь четыре генотипа: СС, Ссс1', Cch и Сс, а гималайские — два генотипа: с''с'' и с''с. В потомстве получилось три фенотипа в отношении Г два дикого типа, один гималайский и один альбинос. Появление альбиносов в потомстве говорит о том, что у каждого из родителей было по одному гену альбинизма — с. Следовательно, генотипы скрещиваемых кроликов были Сс и сьс. Вычертив решетку, видим, что данные истинного расщепления (41:18:21) близки теоретическим :

Без обеих аномалий возможна лишь 1/4 детей, или 25 %. 123. При записи условий задач на множественные аллели следует добавить колонку «генотипы».

По условиям пункта 1 скрещивались шиншилловые кролики с гималайскими. И те и другие могут быть как гомозиготными, так и гетерозиготными. Однако все потомство от их скрещивания получалось единообразным. Так как из признаков этих двух окрасок ни одна не доминирует над другой, а в сочетании они дают светло-серую окраску (генотип с^с11),

108

Решение пунктов 4 и 5 проводится с помощью аналогичных рассуждений.

127. Для решения задач по группам крови необходимо знать генотипы, определяющие ту или иную группу крови и уметь вывести возможные варианты генотипов потомства в зависимости от генотипов родителей. Целесообразно иметь для работы две таблицы: таблицу генотипов при различных группах крови (см. приложение, табл. 3) и таблицу возможных комбинаций генотипов и групп крови детей при различных генотипах родителей (табл. 4).

По условиям задачи родители имеют II и III группы крови. II группу определяют два генотипа (1Аи 1Л1А), III группу —

тоже два (1ВР и Z5/5). Следовательно, возможно четыре варианта решений. По табл. 4 можем найти

133. Для решения задачи составим таблицу вероятных генотипов родителей и детей:

Из таблицы видим, что при любых генотипах первой пары у них не может быть детей с IV группой крови, но возможны дети с I группой. В то же время у родителей второй пары не может быть детей с I группой, но могут быть дети с IV группой крови. Следовательно, мальчик с I группой принадлежит первой паре, мальчик с IV группой — второй паре.

138. Записываем условия задачи:

На растениях с красными жилками, выросших из семян первого пакета, развиваются цветы только с первым комплексом признаков. Их генотипы АА или Аа. Но если бы в хозяйстве были гетерозиготные растения (Аа), то в их потомстве обязательно выщепились бы рецессивные гомозиготы, т. е. белолепестковые растения с зелеными жилками листа. Их в рассаде не оказалось. По тем же причинам в хозяйстве не могло быть и белолепестковых растений. Следовательно, первое хозяйство выращивает только краснолепсстковые растения с генотипом АА.

Из второго пакета выросло 3/4 растений с первым комплексом признаков, 1/4 — со вторым. Расщепление 3:1 происходит в случаях скрещивания моиогибридов (Аа х Аа = АА + 2Аа + аа). Следовательно, во втором хозяйстве все маточные растения были гибридными — Аа.

Из третьего пакета выросла половина растений с первым комплексом признаков, другая половина — со вторым. Расщепление 1 : 1 происходит при скрещивании гибридов (Аа) с рецессивными гомозиготами (аа). Очевидно, в третьем хозяйстве половина маточных растений краснолепеегковых, половина — белолепестковых. В этой популяции не было гомозиготных доминантных форм. Если бы они были, то число рецессивных гомозигот всегда было бы меньше половины.

147.Условия задачи:

Впункте / указано, что в брак вступают гетерозиготные роди гели:

Вероятность того, что в семье появятся дети, несущие ген подагры, равна 3/4. Но не у всех этот геи проявит себя. Он будет проявляться лишь у мужчин. Вероятность рождения мальчиков равна 1/2. Следовательно, наследование гена подагры, способного проявить себя, равно 3/4 х 1/2 = 3/8. Геи подагры проявится лишь у 20% (1/5) несущих его мужчин. Окончательный результат будет равен: 3/8 х 1/5 = 3/40, или 7 5 °/

По условиям пункта 2 один из супругов гетерозиготный носитель гена (Аа), а второй нормальный в отношении подагры (аа). Тс же рассуждения. Вероятность того, что родится ребенок, несущий ген подагры, равна 1/2. Вероятность того, что это будет мужчина, также равна 1/2. Пенетрантность признака 20%, или

1/5. Перемножим вероятности и получим: 1/2 х 1/2 х 1/5 = 1/20, или 5 %.

156. Условия задачи:

R

пары хромосом разойдутся в иных отношениях: 38% —;

38 7 —; 12 7 — и 1 2 % —. Так как попадание в гамету иор-

° п

п

N

мальных и обменявшихся участками хромосом из каждой пары равновероятно, можно записать:

Перемножим цифры, выписанные по горизонтали и вертикали, и, разделив их на 100, получим в точках перекреста число гамет с соответствующим набором генов.

У второго гомозиготного по всем четырем признакам растения гаметы

будут только одного типа —. Следова-

114

|

Соседние файлы в предмете Биология