
- •Введение
- •Классификация процессов коррозии
- •1.1. Показатели коррозионных процессов
- •Электрохимическая коррозия
- •2.1. Механизм электрохимической коррозии
- •2.2. Двойной электрический слой системы
- •2.3. Электродные потенциалы
- •2.4. Термодинамика коррозионных электрических процессов
- •Изменение свободной энергии при переходе 1 моля металла в ионное состояние, кДж/моль
- •2.5. Кинетика коррозионных процессов
- •2.5.1. Скорость коррозионного процесса
- •2.5.2. Поляризация электродных процессов
- •2.5.3. Анодная поляризация
- •2.6. Контролирующий фактор коррозии
- •2.7. Графический анализ работы коррозионного элемента
- •2.8. Пассивность металлов
- •2.8.1. Основные положения
- •2.8.2. Теории пассивности металлов
- •2.8.3. Явление перепассивации
- •2.9. Влияние различных факторов на скорость электрохимической коррозии
- •3. Химическая коррозия металлов
- •3.1. Основные положения
- •3.2. Термодинамическая вероятность химической коррозии
- •3.3. Кинетика химической коррозии
- •3.3.1. Законы роста оксидных пленок
- •3.3.2. Газовая коррозия
- •Упругость диссоциации оксидов, атм.
- •3.3.3. Влияние различных факторов на химическую коррозию
- •3.3.4. Химическая коррозия в неэлектролитах
- •4. Коррозия металлов в различных условиях
- •4.1. Атмосферная коррозия
- •4.2. Подземная коррозия
- •4.3. Коррозия металлов блуждающим током
- •4.4. Морская коррозия
- •4.5. Коррозия в расплавленных солях
- •4.6. Биохимическая коррозия
- •5. Виды коррозионных разрушений
- •5.1. Классификация коррозионных разрушений
- •5.2. Условия возникновения коррозионных разрушений
- •5.3. Локальная коррозия
- •5.3.1. Межкристаллитная коррозия
- •5.3.2. Точечная (питтинговая) коррозия
- •5.3.3. Контактная коррозия
- •5.3.4. Щелевая коррозия
- •5.3.5. Избирательная коррозия
- •Список литературы
- •Оглавление
5.3.2. Точечная (питтинговая) коррозия
Питтинговая коррозия - один из опасных видов локального коррозионного разрушения, характерного для условий, когда пассивное состояние поверхности металла или сплава может частично нарушаться. При этом коррозии подвергаются весьма ограниченные участки металла, а вся остальная поверхность находится в устойчивом пассивном состоянии, что приводит к появлению точечных язв или глубоких питтингов. Обычно такой коррозии подвергаются легкопассивирующиеся металлы и сплавы: хромистые и хромоникелевые стали, алюминий и его сплавы, никель, титан и др.
Питтинговая
коррозия возникает в растворах,
содержащих окислители (например,
кислород) и одновременно активирующие
анионы (,
,
),
например, в растворах хлорного железа,
в морской воде, в смесях азотной и
соляной кислот и др.
Основное условие образования питтинга – смещение электрохимического потенциала, за счет наличия окислителей в растворе, положительнее некоторого критического значения, так называемого потенциала питтингообразования, при этом поверхность питтинга является анодом и разрушается с высокой скоростью вследствие контакта с остальной поверхностью, находящейся в пассивном состоянии и представляющей собой, благодаря относительно большой площади, почти неполяризуемый катод.
При развитии питтинговой коррозии следует различать три стадии: возникновение, развитие питтинга и репассивация. Возникновение питтинга связано с нарушением пассивного состояния на отдельных участках поверхности металлов и сплавов в результате воздействия анионов-активаторов. На этих участках происходит ускоренное разрушение оксидных пленок, что вызывает местное активирование. Нарушение пассивного состояния на отдельных участках приводит к увеличению скорости коррозии. Такими участками могут быть неметаллические включения (например, сульфиды), границы зерен, участки с пониженной концентрацией хрома в твердом растворе, которые могут образовываться при термообработке и др.
Возникновение
точечной коррозии металлов и сплавов
в сильной степени зависит от природы
анионов и их концентрации. Наиболее
сильными анионами-активаторами являются
,
.
Такие анионы, как
,
,
,
,
затрудняют
возникновение точечной коррозии
нержавеющей стали в растворе хлорида
натрия.
На возникновение точечной коррозии оказывают влияние состав сплава, природа металла, состояние поверхности и т. д. Например, с повышением содержания никеля и хрома сопротивление сталей точечной коррозии повышается.
Термическая обработка повышает склонность сталей к точечной коррозии. Так, например, отпуск нержавеющих хромоникелевых сталей вызывает склонность к межкристаллитной коррозии и понижает сопротивление стали к точечной коррозии.
Рост питтинга связан с работой коррозионного гальванического элемента, в котором анодом является питтинг, а катодом - остальная поверхность металла, находящаяся в пассивном состоянии. Эффективной работе такого коррозионного элемента благоприятствует достаточное количество деполяризаторов, а также нахождение питтингов в активном состоянии, чему способствует понижение рН раствора. Скорость коррозии в питтингах различна. В большинстве из них процесс коррозии с течением времени замедляется, в части питтингов коррозия прекращается совсем, и лишь в небольшой части она развивается вглубь металла. Явление прекращения роста питтингов называется репассивацией.
Для защиты от точечной коррозии используют электрохимические методы, ингибиторы и легирование металла. Так, легирование сталей хромом, кремнием, молибденом повышает их стойкость к точечной коррозии.