- •Вариант: Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(А
– В)(А
+ В),
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание 4. Доказать, что четырехугольник с вершинами A(–3; 5; 6), B(1; –5; 7), C(8; –3; –3), D(4; 7; –2) является квадратом.
Задание
5.
Вычислить
диагонали и площадь параллелограмма,
построенного на векторах

Задание
6.
Доказать, что векторы

компланарны.
Задание 7. Даны уравнения двух сторон прямоугольника х – 2у = 0, х–2у+15=0 и уравнение одной из его диагоналей 7х+у–15=0. Найти вершины прямоугольника.
Задание
8.
Написать
уравнение плоскости, проходящей через
прямую
и точкуМ0
(3;4;0).
Задание 9. Привести уравнение к каноническому виду и построить кривую х2+4х–5у+19=0.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)

Задание
2.
Применяя
формулу Муавра, найти
:Z
= –1 + i,
n
= 14.
Задание
3.
Найти
пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а)
|
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(А
– В)(А
+ 2В),
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Найти
угол между диагоналями параллелограмма,
построенного на векторах
и
Задание
5.
Векторы
и
образуют угол
причем
Определить
Вычислить его площадь и высоту
.
Задание
6.
Даны три вектора
Вычислить объем тетраэдра, построенный
на векторах
Задание 7. Найти точку Q, симметричную точке Р(–5;13) относительно прямой 2х – 3у – 3 = 0.
Задание
8.
Составить
уравнение плоскости, проходящей через
прямую
перпендикулярно к плоскости
.
Задание 9. Найти длину и уравнение перпендикуляра, опущенного из фокуса параболы у = –х2/8 на прямую, отсекающую на осях координат отрезки a = b = 2.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)

Задание
2.
Применяя
формулу Муавра, найти
:Z
= –1 – i,
n
= 16.
Задание
3.
Найти
пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а)
|
|
Задание 5. Используя формулу логарифмического диффренцирования, найти производные следующих функций: |
а) |

,


б)

б)
,


б)
б)