- •Вариант: Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)

Задание
2.
Применяя
формулу Муавра, найти
:Z
= 3 + 3i, n
= 16.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а) |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
А(2Е
+ В)
– В(А
– Е),
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Даны
две точки M(-5;7;-6),
N(7;-9;9).
Вычислить проекцию вектора
на ось,
совпадающую с направлением вектора
.
Задание
5.
Вычислить
площадь параллелограмма, построенного
на векторах
и
,
если известны его диагонали
Задание 6. Даны вершины тетраэдра А(2;3;1), В(4;1;-2), С(6;3;7), D(-5;-4;8). Найти длину его высоты, опущенной из вершины D.
Задание 7. Составить уравнение прямой, которая проходит через точку С(8;6) и отсекает от координатного угла треугольник площадью 12 кв.ед.
Задание
8.
Найти
расстояние от точки М(2;–1;3)
до прямой
.
Задание 9. Написать уравнение параболы, если известны фокус F(4;3) и уравнение директрисы у + 1 = 0.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:Z
= 3 – 3i, n
= 8.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а) |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
3(А
+ В)(В
– Е),
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Векторы
и
образуют угол
.
Зная, что
,
,
вычислить
.
Задание
5.
Даны векторы
Вычислить площадь треугольника,
построенного на этих векторах.
Задание 6. Известны точки А(-1;0;-1), В(1;0;0), С(-2;3;1), D(-1;-2;0). Доказать, что треугольник АВС прямоугольный, а точка D не лежит в плоскости треугольника ABC.
Задание 7. В треугольнике с вершинами А(–2;0), В(2;6) и С(4;2) проведена высота ВD. Написать уравнение этой высоты.
Задание 8. Составить уравнение плоскости, проходящей через точку А(2;–1;3) и отсекающей на осях координат равные отрезки и написать уравнение перпендикуляра к этой плоскости, проходящего через точку А.
Задание 9. Найти угол между радиусами окружности х2 + у2 – 4х + 6у – 5 = 0, проведенными в точках пересечения ее с осью Ох.

б)
;
б)
.
,


б)
;
б)
.
,

