Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3422,24 Матем.docx
Скачиваний:
23
Добавлен:
28.03.2015
Размер:
922.56 Кб
Скачать

Контрольная работа №2

Задание 1. Даны комплексные числа и. Найти:

а) б)в)г)д)

Задание 2. Применяя формулу Муавра, найти :,n = 12.

Задание 3. Найти пределы: а) б)

в) г)д)

Задание 4. Найти производные следующих функций:

а) б)

Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций:

а); б).

Контрольная работа №1

Задание 1. Выполнить действия над

матрицами:

А(АЕ) – (А + В)В, где ,

Задание 2. Решить систему уравнений:

а) методом Крамера;

б) методом Гаусса;

в) матричным способом.

Задание 3.Найти общее решение одно-

родной системы и записать

общее решение через фунда-

ментальную систему решений:

Задание 4. Вычислив внутренние углы треугольника с вершинами A(1;2;1), B(3;-1;7), C(7;4;-2), доказать, что этот треугольник равнобедренный.

Задание 5. Вычислить синус угла, образованного векторами

Задание 6. Вычислить объем тетраэдра, вершины которого находятся в точках А(2;-1;1), В(5;5;4), С(3;2;-1), D(4;1;3).

Задание 7. Составить уравнение прямой, которая проходит через точку М1(3;–7) и отсекает на координатных осях отрезки одинаковой величины, отличные от нуля.

Задание 8. Доказать, что прямые ивзаимно перпендикулярны.

Задание 9. Привести уравнение к каноническому виду, найти координаты центра, вершин, фокусов, эксцентриситет, уравнения директрис: 5х2+9у2–30х+18у+9=0. Построить кривую.

Контрольная работа №2

Задание 1. Даны комплексные числа и. Найти:

а) б)в)г)д)

Задание 2. Применяя формулу Муавра, найти :,n = 14.

Задание 3. Найти пределы: а) б)

в) ; г)д)

Задание 4. Найти производные следующих функций:

а) б)

Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций:

а); б).

Контрольная работа №1

Задание 1. Выполнить действия над

матрицами:

(А + В) – В(2А + Е), где,

Задание 2. Решить систему уравнений:

а) методом Крамера;

б) методом Гаусса;

в) матричным способом.

Задание 3.Найти общее решение одно-

родной системы и записать

общее решение через фунда-

ментальную систему решений:

Задание 4. Векторы иобразуют угол. Зная, что вектор,, вычислить угол между векторамии.

Задание 5. Векторы ивзаимно перпендикулярны. Зная, чтовычислить

Задание 6. Даны три вершины А(3;-4;7), В(-5;3;-2), С(1;2;-3) параллелограмма АВСD . Найти его четвертую вершину D, противоположную В.

Задание 7.Составить уравнение прямой, которая проходит через точку Р(2;3) и отсекает на координатных осях отрезки равной длины, отличные от нуля.

Задание 8. Составить уравнение плоскости, проходящей через точку А(0;2;1) и параллельной векторам и.

Задание 9. Привести уравнение к каноническому виду, найти координаты центра, вершин, фокусов, эксцентриситет, уравнения директрис и асимптот: 6х2 – 9у2 – 64х – 54у – 161 = 0. Построить кривую.