- •Вариант: Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:
.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а)
|
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
3(А
– В)
– 2АВ,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Даны
три вектора
,
,
.
Вычислить
Задание
5.
Векторы
и
образуют угол
Зная, что
вычислить
Задание
6.
Установить, компланарны ли векторы


Задание 7. Найти точку М1, симметричную точке М2(8;–9) относительно прямой, проходящей через точки А(3;–4) и В(–1;–2).
Задание
8.
Составить
уравнение плоскости, проходящей через
точку М(1;–2;1)
перпендикулярно прямой
.
Задание
9. Определить
точки гиперболы
,
расстояние которых до правого фокуса
равно 4,5.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:
,n
=12.
Задание
3. Найти
пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а) |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(2А
– Е)А
+ 2АВ,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание 4. Даны вершины треугольника A(1;-2;4), B(-4;-2;0), C(3;-2;1). Определить внутренний угол при вершине B.
Задание 5. Даны вершины треугольника А(1;-1;2), В(5;-6;2), С(1;3;-1). Вычислить длину его высоты, опущенной из вершины В на сторону АС.
Задание 6. Доказать, что четыре точки А(1;2;-1), В(0;1;5), С(-1;2;1), D(2;1;3) лежат в одной плоскости.
Задание 7. Вычислить площадь треугольника, отсекаемого прямой 3х – 4у – 12 = 0 от координатного угла.
Задание
8.
Вычислить
объем пирамиды ограниченной плоскостью
и координатными плоскостями и найти
расстояние от начала координат до данной
плоскости.
Задание 9. Написать уравнение окружности, проходящей через точку М(1;2) и касающейся осей координат.

б)

;
б)
.
,


б)
.
;
б)
.
,

