- •Вариант: Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:
.
Задание
3.
Найти
пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а)
| |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) | |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(А
– В)А
+ 3В,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Даны векторы
,
.
Определить
Задание
5.
Векторы
и
составляют угол 450.
Найти площадь треугольника, построенного
на векторах
если
Задание
6.
Показать, что векторы

компланарны.
Задание 7. Составить уравнение прямой, проходящей через точку Р(3;5) и на одинаковых расстояниях от точек А(–7;3) и В(11;–15).
Задание
8.
Составить
уравнение плоскости, проходящее через
точку М0
(1;–1;–1), перпендикулярно к прямой
.
Задание 9. Привести уравнение кривой к каноническому виду и построить ее:
х2 + 4х + 4у – 2 = 0.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:
.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а) |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
2А
+ (А
+ Е)В,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Даны
вершины четырехугольника A(1;-2;2),
B(1;4;0),
C(-4;1;1),
D(-5;-5;3).
Доказать, что его диагонали
и
взаимно перпендикулярны
Задание
5.
Векторы
и
взаимно перпендикулярны. Зная, что
вычислить
Задание
6.
Вектор
перпендикулярен к векторам
угол между которыми равен
Зная, что
вычислить
Задание 7. Найти проекцию точки Р(–8;12) на прямую, проходящую через точки А(2;–3) и В(–5;1).
Задание
8.
На
оси Оz
найти точку, расстояние которой от
плоскости
равно 2.
Задание 9. Установить тип кривой, ее характеристики: центр, вершины, фокусы, эксцентриситет, уравнения директрис: 4х2+3у2–8х+12у–32=0. Построить кривую.

б)

;
б)
.
,


б)
;
б)
.
,

