- •Вариант: Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №1
- •Контрольная работа №2
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
- •Литература
- •Экзаменационные вопросы (ликв. Академ. Задолженности)
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)

Задание
2.
Применяя
формулу Муавра, найти
:
.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а) |
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(А
– В)А
+2Е,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Найти
длину вектора
,
зная, что
и
взаимны перпендикулярные орты.
Задание
5.
Построить
параллелограмм на векторах
вычислить его площадь и одну из его
высот.
Задание
6.
В тетраэдре с вершинами в точках А(1;1;1),
В(2;0;2), С(2;2;2), D(3;4;-3)
вычислить высоту
,
опущенную на плоскость треугольникаАВС.
Задание 7. Составить уравнение прямой, если точка Р(2;3) служит основанием перпендикуляра, опущенного из начала координат на эту прямую.
Задание
8.
Найти
проекцию точки М1(3;1;–1)
на плоскость
.
Задание
9.
Определить, как расположена прямая
2х–у–3=0 относительно эллипса
.
Контрольная работа №2
Задание
1.
Даны комплексные числа
и
.
Найти:
а)
б)
в)
г)
д)
Задание
2.
Применяя
формулу Муавра, найти
:
.
Задание
3.
Найти пределы: а)
б)
в)
г)
д)
|
Задание 4. Найти производные следующих функций: |
а)
|
|
Задание 5. Используя формулу логарифмического дифференцирования, найти производные следующих функций: |
а) |
Контрольная работа №1
|
Задание 1. Выполнить действия над матрицами: |
(2А
– В)А
+ В,
где
| |
|
Задание 2. Решить систему уравнений: а) методом Крамера; б) методом Гаусса; в) матричным способом. |
| |
|
Задание 3.Найти общее решение одно- родной системы и записать общее решение через фунда- ментальную систему решений: |
| |
Задание
4.
Векторы
и
образуют угол
,
причем
,
.
Определить
.
Задание
5.
Вычислить
площадь параллелограмма, построенного
на векторах
и
если
Задание 6. Вычислить объем пирамиды с вершинами в точках О(0;0;0), А(5;2;0), В(2;5;0), С(1;2;4).
Задание 7. Составить уравнение прямой, параллельной двум данным прямым 2х + 3у – 6 = 0 и 4х + 6у + 17 = 0, проходящей посередине между ними.
Задание
8.
Написать
уравнение перпендикуляра к плоскости
,
проходящего через точку пересечения
этой плоскости с прямой
.
Задание 9. Составить уравнение окружности, касающейся двух параллельных прямых
2х + у – 5 = 0, 2х + у + 15 = 0 и проходящей через точку А(2;1).

б)
б)
,


б)

б)
,

