Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проектирование сварных конструкций / temnikov_v_g_lekcii_metallicheskie_konstrukcii.doc
Скачиваний:
1815
Добавлен:
28.03.2015
Размер:
8.48 Mб
Скачать
      1. Подбор сечений элементов фермы

При подборе сечений элементов ферм для удобства комплектования металла, необходимо стремиться к возможно меньшему числу различных номеров и калибров уголковых профилей, ограничиваясь обычно 6 – 8.

При значительных усилиях в элементах ферм возможно применение двух классов стали: более высокой прочности – для сильно нагруженных поясов и опорных раскосов; малоуглеродистой стали обыкновенного качества – для элементов решетки.

Подбор сечения начинается с подбора сечения сжатого элемента, имеющего наибольшее расчетное усилие. При выборе уголковых профилей для сжатых элементов следует стремиться к применению уголков возможно меньшей толщины, поскольку их радиусы инерции имеют относительно большие значения. Во избежание повреждения ферм во время перевозки и при монтаже принимается минимальный уголок 50×50×5.

Для снижения трудоемкости изготовления в фермах пролетом до 24 м включительно, состоящих из двух отправочных марок, пояса принимаются постоянного сечения, подобранного по максимальному усилию. В стропильных фермах пролетом 30 м и более сечение поясов по длине рационально изменять, при этом лучше изменять только ширину полок, сохраняя неизменной толщину уголков, чтобы облегчить устройство стыков.

Подбор сечений сжатых элементов ферм производится, как правило, из условия устойчивости элемента, растянутых – из условия прочности. Длинные слабо нагруженные элементы подбираются по предельной гибкости. При расчетах на устойчивость сжатых элементов стержневых конструкций покрытий и перекрытий (за исключением замкнутых трубчатых сечений) вводится коэффициент условий работы γс= 0,95; при расчете сжатых элементов (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий (например, стропильных и аналогичных им ферм) при гибкостиλ≥ 60 вводится коэффициент условий работыγс = 0,8.

При расчете соединений (кроме стыковых соединений) рассматриваемых выше элементов коэффициенты условий работы γс= 0,95 иγс = 0,8 учитывать не следует.

Подбор сечений элементов ферм оформляется в табличной форме.

Для примеров геометрическая схема фермы с расчетными усилиями в стержнях представлена на рис. 5.1.

Пример 5.1. Подобрать сечение верхнего сжатого пояса фермы из двух уголков при действии на него расчетного усилия N = – 1300 кН. Расчетные длины стержней: в плоскости фермы 3 м, из плоскости – 3 м (при шаге прогонов кровли d = 3 м). Материал – сталь класса С245 (район ІІ4, здание отапливаемое); Ry = 24 кН/см2; γс = 0,95 (см. табл. 1.3). Максимальное усилие в опорном раскосе Np,max = – 670 кН.

Рис. 5.1. Расчетная и геометрическая схемы фермы

Толщину фасонок выбирают в зависимости от действующих усилий в элементах решетки (табл. 5.6). Принимаем толщину фасовки tф = 14 мм при максимальном усилии в олорном раскосе 670 кН.

Таблица 5.6

Рекомендуемые толщины фасонок

Максимальное усилие в стержнях решетки, кН

До 150

160 – 250

260 – 400

410 – 600

610 – 1000

1010 – 1400

1410 – 1800

Более 1800

Толщина

фасонки, мм

86

8

10

12

14

16

18

20

Поскольку ly = lx, принимаем сечение сжатого пояса из двух равнополочных уголков (рис. 5.2).

Рис. 5.2. Сечение пояса (к примеру 5.1)

При предварительном подборе сечения поясов легких ферм гибкость принимается λ = 60 – 90. Большие значения гибкости принимаются при меньших усилиях.

Задаемся λ = 70. Условная гибкость

По условной гибкости для для типа кривой устойчивости ′′с′′ (см. табл. 3.12) определяем коэффициент устойчивости = 0,674 (см. табл. 3.11).

Из условия устойчивости сжатого стержня определяем требуемую площадь сечения пояса:

Атр = N/(φRyγс) = 1300 / (0,674 ∙ 24 ∙ 0,95) = 84,6 см2.

Требуемый радиус инерции

iтр = lx/λ = 300 / 70 = 4,29 см.

По требуемым значениям площади и радиуса инерции из сортамента

принимаем сечение из двух равнополочных уголков ∟160×160×14/ГОСТ 8509-93. Площадь сечения А = 43,57 ∙ 2 = 87,14 см2; радиус инерции относительно оси х-х – iх = 4,92 см; радиус инерции одного уголка относительно собственной центральной оси, параллельной свободной, iy = 4,92 см; расстояние от центра тяжести уголка до наружной грани полки, параллельной оси y1-y1, zо = 4,47 см.

Определяем радиус инерции составного сечения из двух уголков при зазоре между уголками (толщина фасонки) а = tф = 14 мм:

см.

Подсчитываем гибкости в главных плоскостях:

λх = lx/iх = 300 / 4,92 = 61;

λу = lу/iу = 300 / 7,14 = 42.

Наибольшая условная гибкость

По табл. 3.11. находим минимальный коэффициент φmin = 0,730.

Производим проверку устойчивости центрально-сжатого пояса:

Недонапряжение

Максимальная гибкость

λх = 60,7 < λи = (180 – 60α) = (180 – 60 · 0,896) = 126,

где α = 0,896 – степень загруженности стержня.

В процессе монтажа (раскрепляющие верхний сжатый пояс прогоны или плиты покрытия отсутствуют) в предположении строповки фермы в узлах верхнего пояса через четыре панели гибкость пояса из плоскости фермы не должна превышать предельной

λу = lу / iу = 4 d / i y = 4 ∙ 300 / 7,1 = 169 < λи = 220.

Сечение из двух уголков ∟160×160×14 принято.

Пример 5.2. Подобрать сечение верхнего сжато-изгибаемого пояса при действии на него осевого усилия N = – 1300 кН и внеузловой нагрузки F = 55 кН, приложенной в середине панели d (расчетная схема представлена на рис. 5.3). Расчетная длина пояса λх = λу = d = 3 м.

Материал конструкции – сталь класса С245. Расчетное сопротивление Ry = 24 кН/см2. Коэффициент условий работы γс = 0,95.

Рис. 5.3. Расчетная схема и сечение пояса

Определяем изгибающий момент в середине панели пояса

M = 0,9Fd/4 = 0,9 ∙ 55 ∙ 300 / 4 = 3712, 5 кН∙см.

Эксцентриситет

е = M/N = 3712,15 / 1300 = 2,86 см.

Расчет на устойчивость внецентренно-сжатых и сжато-изгибаемых элементов выполняется как в плоскости действия момента (плоская форма потери устойчивости), так и из плоскости действия момента (изгибно-крутильная форма потери устойчивости).

Расчет таких элементов постоянного сечения в плоскости действия момента, совпадающей с плоскостью симметрии, производится по формуле

Таблица 5.7