- •Министерство образования и науки рф
- •Основные требования, предъявляемые к металлическим конструкциям
- •Сравнительная оценка жесткости изгибаемого элемента при различной компоновке сечения (условно стенка в двутавре исключена)
- •1.3. Методика расчета металлических конструкций по предельным состояниям
- •Общая характеристика предельных состояний
- •Нагрузки и воздействия
- •Коэффициенты надежности по нагрузке
- •Нормативные и расчетные сопротивления материалов
- •Учет условий работы
- •Учет ответственности зданий и сооружений
- •Коэффициенты условий работы
- •1.3.6. Условия предельных состояний
- •Вертикальные предельные прогибы fu элементов конструкций
- •1.4. Организация проектирования
- •1.5. Расчетная схема сооружения (конструкции)
- •1.6. Сортамент
- •1.6.1. Общая характеристика сортамента
- •1.6.2. Сталь листовая
- •Сталь листовая
- •Сталь профильная
- •Сортамент
- •1.6.3. Уголковые профили
- •1.6.4. Швеллеры
- •1.6.5. Двутавры
- •1.6.6. Трубы
- •1.6.7. Вторичные профили
- •1.6.8. Различные профили и материалы, применяемые в строительных металлических конструкциях
- •1.6.9. Профили из алюминиевых сплавов
- •Глава 2
- •Стали для конструкций зданий и сооружений по гост 27772-88
- •Нормируемые характеристики для категорий поставки
- •Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- •Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- •Расчетные сопротивления сварных соединений
- •Нормативные и расчетные сопротивления металла швов сварных соединений
- •Глава 3
- •3.1. Балочные клетки
- •3.2. Расчет изгибаемых элементов в упругой стадии и с учетом развития пластических деформаций
- •Классы напряженных состояний сечений при изгибе
- •3.3. Расчет плоского стального настила
- •Рекомендуемые толщины стального настила
- •Значения коэффициентов f и z
- •Минимальные катеты сварных швов kmin
- •3.4. Расчет прокатной балки настила
- •3.5. Расчет прокатной балки, работающей на косой изгиб
- •Коэффициенты для двутавровых балок с двумя осями симметрии
- •3.6. Расчет и конструирование составной сварной главной балки
- •3.6.1. Определение усилий
- •3.6.2. Компоновка сечения
- •Сортамент горячекатаных полос по гост 103-76*
- •Стальлистовая горячекатаная (выборка из гост 19903-74*)
- •Сталь широкополосная универсальная по (по гост 82-70*)
- •3.6.3. Проверка прочности балки
- •Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- •3.6.4. Изменение сечения балки по длине
- •3.6.5. Проверка общей устойчивости балки
- •3.6.6. Проверка местной устойчивости элементов балки
- •Коэффициенты устойчивости при центральном сжатии
- •Характеристики кривых устойчивости
- •Значения коэффициента ссr в зависимости от значения δ
- •Значения коэффициента c1
- •Значения коэффициента c2
- •Значения коэффициента ccr в зависимости от отношения a/hw
- •3.6.7. Проверка жесткости балки
- •3.6.8. Расчет соединения поясов балки со стенкой
- •3.6.9. Конструирование и расчет опорной части главной балки
- •3.6.10. Проектирование монтажного стыка главной балки
- •Площади сечения болтов
- •Нормы расстановки болтов в болтовых соединениях
- •Коэффициенты трения и надежности h
- •Расчет стыка пояса. Раскладывая изгибающий моментMfна пару сил, определяем расчетное усилие в поясе:
- •Коэффициенты стыка стенки балок
- •Глава 4
- •4.1. Расчет прокатной колонны
- •4.2. Расчет и конструирование сплошной сварной колонны
- •Приближенные значения радиусов инерции IX и iy сечений
- •Предельные условные гибкости
- •4.3. Расчет и конструирование сквозной колонны
- •4.3.1. Расчет колонны на устойчивость относительно материальной оси X-X
- •4.3.2. Расчет колонны на устойчивость относительно свободной оси y-y
- •4.3.3. Сквозная колонна с планками
- •4.3.4. Сквозная колонна с треугольной решеткой
- •4.4. Конструирование и расчет оголовка колонн
- •4.4.1. Оголовок сплошной колонны
- •4.4.2. Оголовок сквозной колонны
- •4.5. Конструирование и расчет базы колонны
- •4.5.1. Определение размеров опорной плиты в плане
- •Расчетные сопротивления бетона Rb
- •4.5.2. Определение толщины опорной плиты
- •Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- •Коэффициенты для расчета на изгиб плиты, опертой на три канта
- •4.5.3. Расчет траверсы
- •4.5.4. Расчет ребер усиления плиты
- •Глава 5
- •5.1. Общая характеристика и классификация ферм
- •5.2. Порядок расчета стропильных ферм
- •5.2.1. Определение нагрузок на ферму
- •5.2.2. Определение усилий в стержнях фермы
- •Расчетные усилия в стержнях фермы, кН (форма таблицы)
- •5.2.3. Определение расчетных длин и предельных гибкостей стержней фермы
- •Предельные гибкости сжатых элементов
- •Предельные гибкости растянутых элементов
- •Расчетные длины стержней ферм
- •5.2.4. Выбор типа сечений стержней фермы
- •Приближенные значения радиусов сечений элементов из уголков
- •Подбор сечений элементов фермы
- •Рекомендуемые толщины фасонок
- •Коэффициент влияния формы сечения η
- •5.2.6. Расчет и конструирование узлов фермы
- •Подбор сечений элементов строительной фермы. Материал – сталь с245,
- •Значения коэффициента α
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •5.2.7. Сопряжение фермы с колонной
- •Расчетные сопротивления срезу и растяжению болтов
- •5.3. Расчет и конструирование решетчатого прогона
- •Состав покрытия
- •Расчетные значения веса снегового покрова на 1 м2 горизонтальной поверхности земли
- •Глава 6
- •6.1. Рекомендации по выбору конструктивной и расчетной схемы каркаса
- •6.1.1. Разбивка сетки колонн
- •Предельные размеры температурных блоков зданий
- •6.1.2. Компоновка однопролетной рамы производственного здания
- •Справочные данные по мостовым кранам нормального режима работы** (для учебного проектирования)
- •Основные размеры элементов подкрановых балок
- •6.1.3. Компоновка связей каркаса
- •6.5. Связи покрытия
- •Глава 7
- •7.1. Расчетная схема рамы
- •7.2. Определение расхода стали на несущие конструкции каркаса
- •Нагрузки от конструкций и элементов покрытия на 1 м2 площади
- •7.2.1. Прогоны
- •Нагрузки на прогон от веса ограждающих конструкций покрытия
- •Расход стали на прогоны
- •7.2.2. Стропильные фермы
- •2. Треугольная ферма.
- •7.2.3. Подстропильные фермы
- •7.2.4. Подкрановые балки
- •7.2.5. Колонны каркаса
- •7.3. Нагрузки, действующие на поперечную раму
- •7.3.1. Постоянные нагрузки
- •7.3.2. Снеговая нагрузка
- •7.3.3. Нагрузки от мостовых кранов
- •7.3.4. Ветровая нагрузка
- •Нормативные значения ветрового давления wo
- •Коэффициенты k для типов местности
- •7.4. Назначение жесткостей элементов рамы
- •7.4.1. Определение жесткости сквозного ригеля
- •7.4.2. Определение жесткостей ступенчатой колонны
- •Расчетные усилия в левой колонне раздельно по каждому виду загружения, кН, кН·м
- •7.5. Статический расчет поперечной рамы
- •7.5.1. Определение расчетных усилий в колонне
- •7.5.2. Определение расчетных сочетаний усилий
- •Расчетные усилия при невыгодных сочетаниях нагрузок
- •7.5.3. Выбор расчетных комбинаций усилий для подбора сечений верхней и нижней частей колонны
- •Глава 8
- •8.1. Общие требования при проектировании конструкций
- •8.2. Исходные данные для расчета колонны
- •8.3. Компоновка сечения и расчет надкрановой части колонны
- •8.3.1. Определение расчетных длин надкрановой части колонны
- •Коэффициенты расчетной длины 1 и 2 для одноступенчатых колонн рам одноэтажных промышленных зданий
- •8.3.2. Подбор сечения колонны
- •8.3.3. Проверка устойчивости надкрановой части колонны
- •Коэффициенты φe для проверки устойчивости внецентренно-сжатых сплошностенчатых стержней в плоскости действия момента
- •Коэффициенты φe для проверки устойчивости внецентренно-сжатых сквозных стержней в плоскости действия момента
- •Значения коэффициентов α и β
- •8.3.4. Проверка местной устойчивости элементов сплошной колонны
- •8.4. Компоновка сечения и расчет подкрановой части колонны
- •8.4.1. Определение расчетных длин подкрановой части колонны
- •8.4.2. Подбор сечения ветвей колонны
- •8.4.3. Проверка устойчивости подкрановой части колонны
- •8.5. Конструирование и расчет базы внецентренно-сжатой колонны
- •8.5.1. Общие требования к базам колонн
- •8.5.2. Определение размеров опорной плиты в плане
- •8.5.3. Определение толщины опорной плиты
- •8.5.4. Расчет траверсы
- •8.5.5. Расчет анкерных болтов и пластин
- •Расчетные сопротивления растяжению фундаментных болтов Rba
- •Предельные усилия на растяжение одного фундаментного болта Fnр
- •8.5.6. Особенности расчета общей базы внецентренно-сжатой колонны
- •8.5.7. Расчет соединения надкрановой и подкрановой частей колонны
- •8.5.8. Прикрепление подкрановой консоли к колонне
- •Глава 9
- •9.1. Особенности работы подкрановых балок
- •9.2. Определение расчетных сил и усилий
- •Продолжение рис. 9.1
- •Расчетное значение поперечной силы от вертикальной нагрузки
- •9.3. Подбор сечения балки
- •Практические значения kw
- •Опорные реакции:
- •Расчетное значение нормативного изгибающего момента
- •9.4. Проверка прочности и устойчивости балки
- •Характеристики подкранового рельса по гост 4121-76*
- •9.5. Расчет соединения поясов подкрановой балки со стенкой
- •Формулы для расчета поясных соединений в составных балках
- •Глава 10
- •Введение
- •10.1. Сварные соединения
- •10.1.1. Сущность сварки
- •10.1.2. Способы сварки металлических конструкций
- •10.1.3. Ручная дуговая сварка плавящимся электродом
- •Размеры электродов
- •Диаметры электродов
- •10.1.4. Автоматическая сварка под слоем флюса
- •10.1.5. Механизированная сварка в среде углекислого газа
- •Технические характеристики полуавтомата пдг-516 с вду-506
- •Параметры режима двусторонней механизированной сварки
- •10.1.6. Термическое воздействие сварки на металл, сварочные напряжения и деформации
- •10.1.7. Мероприятия по уменьшению остаточных сварочных напряжений и деформаций
- •10.1.8. Основные дефекты сварных соединений
- •10.1.9. Дефекты в сварных швах
- •10.1.10. Классификация сварочных дефектов
- •Характерные дефекты и повреждения сварных соединений
- •Дефекты в сварных соединениях и причины их возникновения
- •10.1.11. Контроль качества сварных швов и соединений
- •10.1.12. Техника безопасности при электродуговых способах сварки
- •10.1.13. Виды сварных соединений
- •Виды сварных соединений
- •Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- •10.1.14. Классификация сварных швов
- •Минимальные катеты cварных швов
- •Виды стыковых швов в элементах стальных конструкций
- •10.1.15. Расчет и конструирование сварных соединений
- •10.1.15.1. Стыковые соединения
- •10.1.15.2. Нахлесточные соединения
- •Значения коэффициентов f и z
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •10.1.15.3. Комбинированные соединения
- •10.1.15.4. Тавровые соединения
- •10.1.15.5. Прикрепление угловыми швами несимметричных профилей
- •Значения коэффициента α
- •10.1.15.6. Проектирование монтажного стыка сварной балки
- •10.1.15.7. Расчет сварного соединения на одновременное действие изгибающего момента м и перерезывающей силы q
- •10.2. Болтовые соединения
- •Диаметры отверстий болтов
- •10.2.1. Размещение болтов в соединении
- •Размещение болтов
- •10.2.2. Срезные соединения на болтах нормальной точности
- •Расчетные сопротивления срезу и растяжению болтов
- •Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- •Площади сечения болтов согласно ст сэв 180-75,
- •Коэффициенты условий работы соединения
- •10.2.3. Фрикционные соединения на высокопрочных болтах
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Коэффициенты трения и надежности h
- •2.4. Монтажный стык балки на высокопрочных болтах
- •Коэффициенты стыка стенки балок
- •Приложение 1
- •Исходные данные для статического расчета рамы по программе «Рама-1» (жесткое сопряжение ригеля с колоннами)
- •Приложение 2
- •Результаты статического расчета поперечной рамы одноэтажного однопролетного производственного здания
- •Обозначения: Мл, Nл, Qл – усилия в левой колонне; Мп, Nп, Qп – усилия в правой колонне. Приложение 3
- •Исходные данные для статического расчета рамы по программе «Рама-2» (вариант – шарнирное сопряжение ригеля с колоннами)
- •Приложение 4
- •9.3. Подбор сечения балки . . . . . . 286
- •Металлические конструкции
Расчетные длины стержней ферм
Направление продольного изгиба |
Расчетная длина lef | ||
пояса |
опорные раскосы и опорные стойки |
прочие элементы решетки | |
В плоскости фермы: а) для ферм, кроме указанных в поз. 1, б б) для ферм из одиночных уголков и ферм с прикреплением элементов решетки к поясам впритык |
l |
l |
0,8 l |
l |
l |
0,9 l | |
Перпендикулярно плоскости фермы (из плоскости фермы): а) для ферм, кроме указанных в поз. 2, б б) для ферм с поясами из замкнутых профилей с прикреплением элементов решетки к поясам впритык |
l1 |
l1 |
l1 |
l |
l |
0,9 l |
Обозначения:
l– геометрическая длина элемента (расстояние между центрами узлов) в плоскости фермы;
l1 – расстояние между узлами, закрепленными от смещения из плоскости фермы (прогонами, специальными связями, жесткими плитами покрытий, прикрепленными к поясу сварными швами или болтами, и т.п.).
5.2.4. Выбор типа сечений стержней фермы
Для центрально-сжатых стержней, рассчитываемых на устойчивость, основным требованием при конструировании элемента является стремление к обеспечению равноустойчивости стержня относительно осей х-х иу-у:
λх = (lх/iх) = λу= (lу/iу).
Наиболее распространенными и традиционными являются тавровые сечения стержней ферм, выполненные из двух уголков.
Такие сечения имеют большой диапазон площадей, удобны для конструирования узлов на фасонках и прикрепления примыкающих к фермам конструкций (прогонов, кровельных плит, связей). Существенными недостатками такой конструктивной формы являются: большое количество элементов с различными типоразмерами, значительный расход стали на фасонки и прокладки, высокая трудоемкость изготовления и наличие щели между уголками, что способствует коррозии.
Использование для поясов ферм тавров позволяет значительно упростить узлы.
Тавровое сечение может выполняться из двух равнополочных (iу ≈ 1,33iх) или неравнополочных уголков. Неравнополочные уголки можно составлять узкими полками (iу ≈ 2iх) или более широкими полками (iу ≈ iх) в зависимости от расчетных длин элементов при расчете в двух направлениях, обеспечивая равноустойчивость сечения (см. табл. 5.5).
Таблица 5.5
Приближенные значения радиусов сечений элементов из уголков
Радиусы инерции |
Сечение элементов | ||
| |||
rx и rη ry |
rη= 0,195 h rx = ry= 0,3 h |
rx= 0,3 h ry= 0,2 b |
0,28 h 0,24 b |
Радиусы инерции | |||
rx и rη ry |
0,32 h 0,2 b |
rη= 0,185 h 0,21 h |
0,3 h 0,17 b |
При закреплении сжатого верхнего пояса горизонтальными связями (распорками) через узел расчетная длина из плоскости фермы оказывается в два раза больше, чем в плоскости фермы lу = 2lх, равноустойчивость пояса (λу = λх) будет обеспечена при таком же соотношении радиусов инерции (iу = 2iх).Этому условию отвечают неравнополочные уголки, составленные узкими полками (большими полками из плоскости фермы).
Если пояс работает на местный изгиб от межузловой нагрузки при lу = 2lх, сечение пояса принимается из равнополочных уголков. При больших межузловых нагрузках сечение может выполняться из двух швеллеров.
Если верхний пояс закреплен из плоскости в каждом узле (связями, прогонами или приваренными к нему крупнопанельными железобетонными плитами), то lу = lх и теоретически наиболее подходящим является сечение, выполненное из двух неравнополочных уголков, составленных широкими полками (iу ≈ iх). Однако вследствие недостаточной боковой жесткости при транспортировании и монтаже пояса такого сечения могут погнуться из своей плоскости, поэтому практически более предпочтительно сечение из равнополочных уголков, которые незначительно уступают неравнополочным по геометрическим характеристикам, зато сортамент их значительно шире. В таких же условиях работают сжатые опорные раскосы, имеющие одинаковые расчетные длины из плоскости и в плоскости фермы, их сечения, как правило, тоже принимают из равнополочных уголков.
При уменьшении расчетной длины в плоскости фермы lхвдвое с помощью шпренгеля (что имеет место в типовых фермах покрытий производственных зданий) более рациональным является сечение опорного раскоса из неравнополочных уголков, составленных узкими полками.
Остальные сжатые раскосы, а также сжатые стойки обычно проектируются из равнополочных уголков, у которых соотношение радиусов инерции примерно отвечает соотношению расчетных длин lу = 1,25lх.
Для растянутых стержней ферм тип и ориентация уголков имеют второстепенное значение. Сечение нижнего пояса рекомендуется принимать из двух неравнополочных уголков, составленных узкими полками для придания ферме боковой жесткости во время перевозки и монтажа.
Растянутые стержни решетки, как и сжатые, обычно проектируются таврового сечения из двух равнополочных уголков.
Для соединения стрежней из двух уголков между собой и обеспечения их совместной работы как единого стержня ставятся прокладки. Наибольшие расстояния на участках между приваренными прокладками (в свету) должны не превышать: для сжатых элементов – 40i, для растянутых – 80i, где i – радиус инерции уголка, принимаемый для тавровых сечений относительно оси, параллельной плоскости расположения прокладок, а для крестовых сечений – минимальным. Прокладки выполняются шириной 60 – 100 мм и длиной на 20 – 30 мм больше ширины уголка. В сжатых элементах ставится не менее двух прокладок.
Наиболее эффективным для сжатых элементов является тонкостенное трубчатое сечение, обладающее благоприятным распределением материала относительно центра тяжести и хорошей обтекаемостью, благодаря чему они испытывают меньшие ветровые давления, на них мало задерживается грязь и влага, поэтому они более стойкие против коррозии, их легко очищать и окрашивать, что также повышает долговечность. Сопряжение трубчатых стержней в узлах представляет определенные трудности.
Прямоугольные гнутозамкнутые сечения, обладая почти теми же преимуществами, что и круглые трубы, позволяют упростить узлы сопряжения элементов.
При наличии межузловой нагрузки, действующей на верхний пояс фермы, возможно выполнение его из двух швеллеров.
При относительно небольшом усилии стержни ферм могут выполняться из одиночных уголков.