
- •Министерство образования и науки рф
- •Основные требования, предъявляемые к металлическим конструкциям
- •Сравнительная оценка жесткости изгибаемого элемента при различной компоновке сечения (условно стенка в двутавре исключена)
- •1.3. Методика расчета металлических конструкций по предельным состояниям
- •Общая характеристика предельных состояний
- •Нагрузки и воздействия
- •Коэффициенты надежности по нагрузке
- •Нормативные и расчетные сопротивления материалов
- •Учет условий работы
- •Учет ответственности зданий и сооружений
- •Коэффициенты условий работы
- •1.3.6. Условия предельных состояний
- •Вертикальные предельные прогибы fu элементов конструкций
- •1.4. Организация проектирования
- •1.5. Расчетная схема сооружения (конструкции)
- •1.6. Сортамент
- •1.6.1. Общая характеристика сортамента
- •1.6.2. Сталь листовая
- •Сталь листовая
- •Сталь профильная
- •Сортамент
- •1.6.3. Уголковые профили
- •1.6.4. Швеллеры
- •1.6.5. Двутавры
- •1.6.6. Трубы
- •1.6.7. Вторичные профили
- •1.6.8. Различные профили и материалы, применяемые в строительных металлических конструкциях
- •1.6.9. Профили из алюминиевых сплавов
- •Глава 2
- •Стали для конструкций зданий и сооружений по гост 27772-88
- •Нормируемые характеристики для категорий поставки
- •Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по гост 27772-88 для стальных конструкций зданий и сооружений
- •Расчетные сопротивления проката смятию торцевой поверхности (при наличии пригонки)
- •Расчетные сопротивления сварных соединений
- •Нормативные и расчетные сопротивления металла швов сварных соединений
- •Глава 3
- •3.1. Балочные клетки
- •3.2. Расчет изгибаемых элементов в упругой стадии и с учетом развития пластических деформаций
- •Классы напряженных состояний сечений при изгибе
- •3.3. Расчет плоского стального настила
- •Рекомендуемые толщины стального настила
- •Значения коэффициентов f и z
- •Минимальные катеты сварных швов kmin
- •3.4. Расчет прокатной балки настила
- •3.5. Расчет прокатной балки, работающей на косой изгиб
- •Коэффициенты для двутавровых балок с двумя осями симметрии
- •3.6. Расчет и конструирование составной сварной главной балки
- •3.6.1. Определение усилий
- •3.6.2. Компоновка сечения
- •Сортамент горячекатаных полос по гост 103-76*
- •Стальлистовая горячекатаная (выборка из гост 19903-74*)
- •Сталь широкополосная универсальная по (по гост 82-70*)
- •3.6.3. Проверка прочности балки
- •Наибольшие значения отношения ширины свеса сжатого пояса bef к толщине tf
- •3.6.4. Изменение сечения балки по длине
- •3.6.5. Проверка общей устойчивости балки
- •3.6.6. Проверка местной устойчивости элементов балки
- •Коэффициенты устойчивости при центральном сжатии
- •Характеристики кривых устойчивости
- •Значения коэффициента ссr в зависимости от значения δ
- •Значения коэффициента c1
- •Значения коэффициента c2
- •Значения коэффициента ccr в зависимости от отношения a/hw
- •3.6.7. Проверка жесткости балки
- •3.6.8. Расчет соединения поясов балки со стенкой
- •3.6.9. Конструирование и расчет опорной части главной балки
- •3.6.10. Проектирование монтажного стыка главной балки
- •Площади сечения болтов
- •Нормы расстановки болтов в болтовых соединениях
- •Коэффициенты трения и надежности h
- •Расчет стыка пояса. Раскладывая изгибающий моментMfна пару сил, определяем расчетное усилие в поясе:
- •Коэффициенты стыка стенки балок
- •Глава 4
- •4.1. Расчет прокатной колонны
- •4.2. Расчет и конструирование сплошной сварной колонны
- •Приближенные значения радиусов инерции IX и iy сечений
- •Предельные условные гибкости
- •4.3. Расчет и конструирование сквозной колонны
- •4.3.1. Расчет колонны на устойчивость относительно материальной оси X-X
- •4.3.2. Расчет колонны на устойчивость относительно свободной оси y-y
- •4.3.3. Сквозная колонна с планками
- •4.3.4. Сквозная колонна с треугольной решеткой
- •4.4. Конструирование и расчет оголовка колонн
- •4.4.1. Оголовок сплошной колонны
- •4.4.2. Оголовок сквозной колонны
- •4.5. Конструирование и расчет базы колонны
- •4.5.1. Определение размеров опорной плиты в плане
- •Расчетные сопротивления бетона Rb
- •4.5.2. Определение толщины опорной плиты
- •Коэффициенты 1 для расчета на изгиб плиты, опертой по четырем сторонам
- •Коэффициенты для расчета на изгиб плиты, опертой на три канта
- •4.5.3. Расчет траверсы
- •4.5.4. Расчет ребер усиления плиты
- •Глава 5
- •5.1. Общая характеристика и классификация ферм
- •5.2. Порядок расчета стропильных ферм
- •5.2.1. Определение нагрузок на ферму
- •5.2.2. Определение усилий в стержнях фермы
- •Расчетные усилия в стержнях фермы, кН (форма таблицы)
- •5.2.3. Определение расчетных длин и предельных гибкостей стержней фермы
- •Предельные гибкости сжатых элементов
- •Предельные гибкости растянутых элементов
- •Расчетные длины стержней ферм
- •5.2.4. Выбор типа сечений стержней фермы
- •Приближенные значения радиусов сечений элементов из уголков
- •Подбор сечений элементов фермы
- •Рекомендуемые толщины фасонок
- •Коэффициент влияния формы сечения η
- •5.2.6. Расчет и конструирование узлов фермы
- •Подбор сечений элементов строительной фермы. Материал – сталь с245,
- •Значения коэффициента α
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •5.2.7. Сопряжение фермы с колонной
- •Расчетные сопротивления срезу и растяжению болтов
- •5.3. Расчет и конструирование решетчатого прогона
- •Состав покрытия
- •Расчетные значения веса снегового покрова на 1 м2 горизонтальной поверхности земли
- •Глава 6
- •6.1. Рекомендации по выбору конструктивной и расчетной схемы каркаса
- •6.1.1. Разбивка сетки колонн
- •Предельные размеры температурных блоков зданий
- •6.1.2. Компоновка однопролетной рамы производственного здания
- •Справочные данные по мостовым кранам нормального режима работы** (для учебного проектирования)
- •Основные размеры элементов подкрановых балок
- •6.1.3. Компоновка связей каркаса
- •6.5. Связи покрытия
- •Глава 7
- •7.1. Расчетная схема рамы
- •7.2. Определение расхода стали на несущие конструкции каркаса
- •Нагрузки от конструкций и элементов покрытия на 1 м2 площади
- •7.2.1. Прогоны
- •Нагрузки на прогон от веса ограждающих конструкций покрытия
- •Расход стали на прогоны
- •7.2.2. Стропильные фермы
- •2. Треугольная ферма.
- •7.2.3. Подстропильные фермы
- •7.2.4. Подкрановые балки
- •7.2.5. Колонны каркаса
- •7.3. Нагрузки, действующие на поперечную раму
- •7.3.1. Постоянные нагрузки
- •7.3.2. Снеговая нагрузка
- •7.3.3. Нагрузки от мостовых кранов
- •7.3.4. Ветровая нагрузка
- •Нормативные значения ветрового давления wo
- •Коэффициенты k для типов местности
- •7.4. Назначение жесткостей элементов рамы
- •7.4.1. Определение жесткости сквозного ригеля
- •7.4.2. Определение жесткостей ступенчатой колонны
- •Расчетные усилия в левой колонне раздельно по каждому виду загружения, кН, кН·м
- •7.5. Статический расчет поперечной рамы
- •7.5.1. Определение расчетных усилий в колонне
- •7.5.2. Определение расчетных сочетаний усилий
- •Расчетные усилия при невыгодных сочетаниях нагрузок
- •7.5.3. Выбор расчетных комбинаций усилий для подбора сечений верхней и нижней частей колонны
- •Глава 8
- •8.1. Общие требования при проектировании конструкций
- •8.2. Исходные данные для расчета колонны
- •8.3. Компоновка сечения и расчет надкрановой части колонны
- •8.3.1. Определение расчетных длин надкрановой части колонны
- •Коэффициенты расчетной длины 1 и 2 для одноступенчатых колонн рам одноэтажных промышленных зданий
- •8.3.2. Подбор сечения колонны
- •8.3.3. Проверка устойчивости надкрановой части колонны
- •Коэффициенты φe для проверки устойчивости внецентренно-сжатых сплошностенчатых стержней в плоскости действия момента
- •Коэффициенты φe для проверки устойчивости внецентренно-сжатых сквозных стержней в плоскости действия момента
- •Значения коэффициентов α и β
- •8.3.4. Проверка местной устойчивости элементов сплошной колонны
- •8.4. Компоновка сечения и расчет подкрановой части колонны
- •8.4.1. Определение расчетных длин подкрановой части колонны
- •8.4.2. Подбор сечения ветвей колонны
- •8.4.3. Проверка устойчивости подкрановой части колонны
- •8.5. Конструирование и расчет базы внецентренно-сжатой колонны
- •8.5.1. Общие требования к базам колонн
- •8.5.2. Определение размеров опорной плиты в плане
- •8.5.3. Определение толщины опорной плиты
- •8.5.4. Расчет траверсы
- •8.5.5. Расчет анкерных болтов и пластин
- •Расчетные сопротивления растяжению фундаментных болтов Rba
- •Предельные усилия на растяжение одного фундаментного болта Fnр
- •8.5.6. Особенности расчета общей базы внецентренно-сжатой колонны
- •8.5.7. Расчет соединения надкрановой и подкрановой частей колонны
- •8.5.8. Прикрепление подкрановой консоли к колонне
- •Глава 9
- •9.1. Особенности работы подкрановых балок
- •9.2. Определение расчетных сил и усилий
- •Продолжение рис. 9.1
- •Расчетное значение поперечной силы от вертикальной нагрузки
- •9.3. Подбор сечения балки
- •Практические значения kw
- •Опорные реакции:
- •Расчетное значение нормативного изгибающего момента
- •9.4. Проверка прочности и устойчивости балки
- •Характеристики подкранового рельса по гост 4121-76*
- •9.5. Расчет соединения поясов подкрановой балки со стенкой
- •Формулы для расчета поясных соединений в составных балках
- •Глава 10
- •Введение
- •10.1. Сварные соединения
- •10.1.1. Сущность сварки
- •10.1.2. Способы сварки металлических конструкций
- •10.1.3. Ручная дуговая сварка плавящимся электродом
- •Размеры электродов
- •Диаметры электродов
- •10.1.4. Автоматическая сварка под слоем флюса
- •10.1.5. Механизированная сварка в среде углекислого газа
- •Технические характеристики полуавтомата пдг-516 с вду-506
- •Параметры режима двусторонней механизированной сварки
- •10.1.6. Термическое воздействие сварки на металл, сварочные напряжения и деформации
- •10.1.7. Мероприятия по уменьшению остаточных сварочных напряжений и деформаций
- •10.1.8. Основные дефекты сварных соединений
- •10.1.9. Дефекты в сварных швах
- •10.1.10. Классификация сварочных дефектов
- •Характерные дефекты и повреждения сварных соединений
- •Дефекты в сварных соединениях и причины их возникновения
- •10.1.11. Контроль качества сварных швов и соединений
- •10.1.12. Техника безопасности при электродуговых способах сварки
- •10.1.13. Виды сварных соединений
- •Виды сварных соединений
- •Допустимая наибольшая разность толщин деталей, свариваемых встык без скоса кромок
- •10.1.14. Классификация сварных швов
- •Минимальные катеты cварных швов
- •Виды стыковых швов в элементах стальных конструкций
- •10.1.15. Расчет и конструирование сварных соединений
- •10.1.15.1. Стыковые соединения
- •10.1.15.2. Нахлесточные соединения
- •Значения коэффициентов f и z
- •Максимальные катеты швов kf, max у скруглений прокатных профилей
- •10.1.15.3. Комбинированные соединения
- •10.1.15.4. Тавровые соединения
- •10.1.15.5. Прикрепление угловыми швами несимметричных профилей
- •Значения коэффициента α
- •10.1.15.6. Проектирование монтажного стыка сварной балки
- •10.1.15.7. Расчет сварного соединения на одновременное действие изгибающего момента м и перерезывающей силы q
- •10.2. Болтовые соединения
- •Диаметры отверстий болтов
- •10.2.1. Размещение болтов в соединении
- •Размещение болтов
- •10.2.2. Срезные соединения на болтах нормальной точности
- •Расчетные сопротивления срезу и растяжению болтов
- •Расчетные сопротивления смятию Rвр элементов, соединяемых болтами
- •Площади сечения болтов согласно ст сэв 180-75,
- •Коэффициенты условий работы соединения
- •10.2.3. Фрикционные соединения на высокопрочных болтах
- •Механические свойства высокопрочных болтов по гост 22356 – 77*
- •Коэффициенты трения и надежности h
- •2.4. Монтажный стык балки на высокопрочных болтах
- •Коэффициенты стыка стенки балок
- •Приложение 1
- •Исходные данные для статического расчета рамы по программе «Рама-1» (жесткое сопряжение ригеля с колоннами)
- •Приложение 2
- •Результаты статического расчета поперечной рамы одноэтажного однопролетного производственного здания
- •Обозначения: Мл, Nл, Qл – усилия в левой колонне; Мп, Nп, Qп – усилия в правой колонне. Приложение 3
- •Исходные данные для статического расчета рамы по программе «Рама-2» (вариант – шарнирное сопряжение ригеля с колоннами)
- •Приложение 4
- •9.3. Подбор сечения балки . . . . . . 286
- •Металлические конструкции
10.1.15. Расчет и конструирование сварных соединений
10.1.15.1. Стыковые соединения
Стыковое сварное соединение является наиболее простым и надежным. В стыковых швах при всех видах сварки плавлением концентрация напряжений имеет минимальные значения.
При действии на соединение статической нагрузки первоначальная концентрация напряжений в стыковом сварном шве не оказывает влияние на его прочность, так как из-за развития пластических деформаций происходит релаксация напряжений в точках концентрации. Поэтому расчет стыковых сварных соединений выполняют в предположении, что распределение напряжений в поперечном сечении сварного шва равномерно.
Расчет сварных стыковых соединений на центральное растяжение или
сжатие производится по формуле
N / (t lw ) ≤Rwy γс,
где N– внешнее усилие, приложенное к соединению;
t– расчетная толщина шва, равная толщине наиболее тонкого из соединяемых элементов (местное утолщение в виде валика сварного шва в расчет не принимается); в том случае, если невозможно обеспечить полный провар по толщине свариваемых элементов путем подварки корня шва, например, при односторонней сварке или использовании остающейся стальной подкладки, в формуле вместоtследует принимать 0,7t;
lw – расчетная длина шва, равная полной ширине соединяемых элементов за вычетом 2t, учитывающих низкое качество шва в зонах зажигания (непровар) и прерывания (кратер) сварочной дуги. При условии выполнения шва с применением выводных технологических планок, позволяющих вывести начало и конец шва за пределы рабочего сечения шва, расчетная длина принимается равной полной его длине (после сварки технологические планки срезаются, а торцы шва зачищаются наждачным кругом);
Rwy – расчетное сопротивление сварного стыкового соединения, принимаемое по табл. 2.6;
γс– коэффициент условий работы, принимаемый по табл. 1.3.
Расчетное сопротивление сварного стыкового шва зависит от способов контроля качества сварного шва. Расчетное сопротивление сварного стыкового шва Rwyравно расчетному сопротивлению основного металлаRyпри сжатии, а также при растяжении, если применяются физические методы контроля качества сварных швов (об этом обязательно должна быть сделана запись в рабочих чертежах КМ). Если физические методы контроля качества шва, работающего на растяжение, не используются, то следует приниматьRwy = 0,85 Ry.
Так как расчетное сопротивление стали зависит от толщины проката, то в расчетах следует принимать Ryнаиболее толстого из свариваемых элементов.
Расчет сварных стыковых соединений растянутых элементов конструкций из стали с соотношением Ru/γu>Ry, эксплуатация которых возможна и после достижения металлом предела текучести, производится по формуле
N / (tlw) ≤Rwu /γuγc,
где Ru– расчетное сопротивление проката по временному сопротивлению, (см. табл. 2.3);
γu– дополнительный коэффициент надежности, учитывающий повышенную опасность при расчете конструкций с использованием расчетного сопротивленияRuи принимаемый для стали равнымγu= 1,3;
Rwu– расчетное сопротивление сварного соединения по временному
сопротивлению (см. табл. 2.6).
Расчет сварных стыковых соединений выполнять не требуется при применении сварочных материалов (см. табл. 2.5), полном проваре соединяемых элементов и физическом контроле качества растянутых швов.
Пример 10.1. Рассчитать и законструировать стыковое соединение листов шириной 500 мм, толщинойt1= 10 мм иt2= 14 мм при действии расчетного растягивающего усилияN= 1200 кН (рис. 10.26,а). Материал листов – сталь класса С245. Шов выполнен с полным проваром без применения физических методов контроля качества шва, концы шва не выведены на специальные технологические планки.
Стык выполняется ручной сваркой электродами Э42 (см. табл. 2.5).
В более толстом листе делаем скос с уклоном 1: 5, т.к. разность толщин соединяемых элементов t2–t1= 14 – 10 = 4 мм > 2 мм (см. табл. 10.9).
При минимальной толщине соединяемых листов t1= 10 мм разделка кромок не требуется.
Листовой прокат из стали С245 толщиной tmax=t2 = 14 мм имеет расчетное сопротивлениеRy = 240 МПа = 24 кН/см2 (см. табл. 2.3).
Расчетное сопротивление сварного стыкового соединения принимаем:
Rwy= 0,85Ry = 0,85 · 240 = 204 МПа.
Рис. 10.26. К расчету стыковых швов:
а – прямой шов; б – косой шов, выполненный с применением
выводных планок.
Расчетная длина шва lw =b– 2t1 = 50 – 2 · 1 = 48 см.
Проверяем прочность сварного стыкового шва:
σw=N/ (t1 lw) = 1200 / (1 · 48) = 25 кН/см2= 250 МПа >Rwy= 204 МПа.
Условие не выполняется, необходимо устройство косого шва.
Пример 10.2. Рассчитать и запроектировать сварное соединение косым швом встык с полным проваром и выводом начала и конца шва на технологические планки (рис. 10.26,б). Остальные условия см. пример. 10.1.
На практике косой стык устраивается с заложением 2:1, что соответствует углу α≈ 63,5о.
Расчет прочности шва по нормальным напряжениям:
σw=N sinα/ (t lw')= 1200 ∙ 0,895 / (1 · 55,87) = 19,22 кН/см2= 192,2 МПа <
< Rwy γc = 204 · 1 = 204 МПа,
где sinα=sin63,5о= 0,895;
lw′=lw /sinα= 50 / 0,895 = 55,87 см – расчетная длина косого шва.
Расчет прочности шва по касательным напряжениям:
τw=N cosα/ (t lw′ ) = 1200 ∙ 0, 446 / (1 ∙ 55,87) = 9,58 кН/см2= 95,8 МПа <
< Rws γc = 118,3 МПа,
где cosα =cos63,5o= 0,446;
Rws = 0,58Rwy= 0,58·204 = 118,3 МПа.
Прочность косого стыкового шва обеспечена как по нормальным, так и по касательным напряжениям.
При действии на соединение статической нагрузки проверка по приведенным напряжениям, как правило, не производится.
Сварные стыковые соединения, выполненные без физических способов контроля качества шва, при одновременном действии в одном и том же сечении нормальных и касательных напряжений при действии на соединение динамической нагрузки проверяются по формуле
Прочность сварного шва при скосе с заложением 2:1 не обеспечена. Уменьшаем угол наклона среза и принимаем его α = 45º(скос с заложением 1:1).
Производим повторную проверку.
Нормальные напряжения в шве
σw=N sin45о/ (t lw′) = 1200 · 0,7 / (1 · 71,43) = 11,76 кН/см2,
где lw′ =lw/sin45о= 50 / 0,7 = 71,43 см.
Касательные напряжения в шве
τw =Ncos45o/ (t lw′) = 1200 · 0,7 / (1 · 71,43) = 11,76 кН/см2.
Проверка приведенных напряжений
Прочность сварного шва обеспечена.
Пример 10.3. Проверить прочность соединения, выполненного стыковым швом, консольного листа сечениемb×t= 300×8 мм к стенке стойки из тавра
15ШТ / ТУ 14-2-685-86(толщина стенкиs =
8 мм). К консоли приложена расчетная
сосредоточенная силаF= 100 кН с эксцентриситетомe= 200 мм.
Конструкция относится ко второй группе и выполнена из стали С245. Сварка ручная с полным проваром шва при визуальном способе контроля качества шва. Условия работы – нормальные (рис. 10.27).
Расчетное сопротивление листового и фасонного проката из стали С245 толщиной до 20 мм Ry= 240 МПа = 24 кН/см2(см. табл. 2.3).
Расчетное сопротивление сварного стыкового соединения (см. табл. 2.5):
– изгибу при визуальном способе контроля качества шва Rwy = 0,85Ry=
= 0,85 · 240 = 204 МПа = 20,4 кН/см2;
– сдвигу Rws =Rs = 139,2 МПа,
где Rs = 0,58Ry= 0,58 · 240 = 139,2 МПа – расчетное сопротивление проката сдвигу.
Рис. 10.27. Прикрепление консольного листа стыковым швом
Расчетный изгибающий момент
M = Fe= 100 · 0,2 = 20 кН·м.
Поперечная сила
Q = F= 100 кН.
Момент сопротивления стыкового шва
Ww = tlw2/ 6 = 0,8 · 28,42/ 6 = 107,54 см3,
где lw = b –2 t = 30 – 2 · 0,8 = 28,4 см – расчетная длина шва с учетом непровара в начале шва и кратера в конце шва.
Определяем:
– нормальные напряжения в шве
σw=M/Ww = 2000 / 107,54 = 18,6 кН/см2;
– касательные напряжения в шве
τw = 1,5Q/ (t lw) = 1,5 · 100 / (0,8 · 28,4) = 6,6 кН/см2;
Проверяем прочность шва по приведенным напряжениям:
Прочность соединения обеспечена.