Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Лекция №4. Сжатие информации.docx
Скачиваний:
404
Добавлен:
28.03.2015
Размер:
154.66 Кб
Скачать

Код Хаффмана.

Алгоритм Хаффмана изящно реализует общую идею статистического кодирования с использованием префиксных множеств и работает следующим образом:

1. Выписываем в ряд все символы алфавита в порядке возрастания или убывания вероятности их появления в тексте.

2. Последовательно объединяем два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагаем равной сумме вероятностей составляющих его символов. В конце концов построим дерево, каждый узел которого имеет суммарную вероятность всех узлов, находящихся ниже него.

3. Прослеживаем путь к каждому листу дерева, помечая направление к каждому узлу (например, направо - 1, налево - 0) . Полученная последовательность дает кодовое слово, соответствующее каждому символу (рис.).

Построим кодовое дерево для сообщения со следующим алфавитом:

A B C D E

10 5 8 13 10

B C A E D

5 8 10 10 13

A E BC D

10 10 13 13

BC D AE

13 13 20

AE BCD

20 26

AEBCD

46

Недостатки методов

Самой большой сложностью с кодами, как следует из предыдущего обсуждения, является необходимость иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст; мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще один недостаток кодов - это то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и 0,1, и 0,01 бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте. Например, если в тексте на английском языке нам встречается буква q, то мы с уверенностью сможем сказать, что после нее будет идти буква u.

RLE

Групповое кодирование - Run Length Encoding (RLE) - один из самых старых и самых простых алгоритмов архивации. Сжатие в RLE происходит за счет замены цепочек одинаковых байт на пары "счетчик, значение". («красный, красный, ..., красный» записывается как «N красных»).

Одна из реализаций алгоритма такова: ищут наименнее часто встречающийся байт, называют его префиксом и делают замены цепочек одинаковых символов на тройки "префикс, счетчик, значение". Если же этот байт встретичается в исходном файле один или два раза подряд, то его заменяют на пару "префикс, 1" или "префикс, 2". Остается одна неиспользованная пара "префикс, 0", которую можно использовать как признак конца упакованных данных.

При кодировании exe-файлов можно искать и упаковывать последовательности вида AxAyAzAwAt..., которые часто встречаются в ресурсах (строки в кодировке Unicode)

К положительным сторонам алгоритма, можно отнести то, что он не требует дополнительной памяти при работе, и быстро выполняется. Алгоритм применяется в форматах РСХ, TIFF, ВМР. Интересная особенность группового кодирования в PCX заключается в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

LZW

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. Работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат - GIF - более примитивен - он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF - файла находится палитра - таблица, устанавливающая соответствие между индексом цвета - числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Алгоритмы сжатия с потерей информации

JPEG

Алгоритм JPEG был разработан группой фирм под названием Joint Photographic Experts Group. Целью проекта являлось создание высокоэффективного стандарта сжатия как черно-белых, так и цветных изображений, эта цель и была достигнута разработчиками. В настоящее время JPEG находит широчайшее применение там, где требуется высокая степень сжатия - например, в Internet.

В отличие от LZW-алгоритма JPEG-кодирование является кодированием с потерями. Сам алгоритм кодирования базируется на очень сложной математике, но в общих чертах его можно описать так: изображение разбивается на квадраты 8*8 пикселов, а затем каждый квадрат преобразуется в последовательную цепочку из 64 пикселов. Далее каждая такая цепочка подвергается так называемому DCT-преобразованию, являющемуся одной из разновидностей дискретного преобразования Фурье. Оно заключается в том, что входную последовательность пикселов можно представить в виде суммы синусоидальных и косинусоидальных составляющих с кратными частотами (так называемых гармоник). В этом случае нам необходимо знать лишь амплитуды этих составляющих для того, чтобы восстановить входную последовательность с достаточной степенью точности. Чем большее количество гармонических составляющих нам известно, тем меньше будет расхождение между оригиналом и сжатым изображением. Большинство JPEG-кодеров позволяют регулировать степень сжатия. Достигается это очень простым путем: чем выше степень сжатия установлена, тем меньшим количеством гармоник будет представлен каждый 64-пиксельный блок.

Безусловно, сильной стороной данного вида кодирования является большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило его широкое применение в Internet, где уменьшение размера файлов имеет первостепенное значение, в мультимедийных энциклопедиях, где требуется хранение возможно большего количества графики в ограниченном объеме.

Отрицательным свойством этого формата является неустранимое никакими средствами, внутренне ему присущее ухудшение качества изображения. Именно этот печальный факт не позволяет применять его в полиграфии, где качество ставится во главу угла.

Однако формат JPEG не является пределом совершенства в стремлении уменьшить размер конечного файла. В последнее время ведутся интенсивные исследования в области так называемого вейвлет-преобразования (или всплеск-преобразования). Основанные на сложнейших математических принципах вейвлет-кодеры позволяют получить большее сжатие, чем JPEG, при меньших потерях информации. Несмотря на сложность математики вейвлет-преобразования, в программной реализации оно проще, чем JPEG. Хотя алгоритмы вейвлет-сжатия пока находятся в начальной стадии развития, им уготовано большое будущее.