
- •2. Атомно-кристаллическое строение металлов
- •Строение реальных кристаллов
- •Аллотропические модификации металлов
- •3.2. Механизм процесса кристаллизации
- •3.3. Аморфное состояние металлов
- •3.4. Реальная форма кристаллических образований
- •3.5. Получение монокристаллов
- •3.6. Жидкие кристаллы
- •3.7. Строение стального слитка
- •3.8. Методы исследования структуры
- •4.2.2. Твердость – способность материалов сопротивляться пластической или упругой деформации при внедрении в него более твердого тела, которое называется индентором.
- •4.3. Конструкционная прочность металлов и сплавов
- •4.4. Пути повышения прочности металлов
- •4.5. Влияние нагрева на строение и свойства деформированного металла (рекристаллизация)
- •5.2. Химические соединения
- •5.3. Электронные соединения (фазы Юм – Розари)
- •5.4. Механические смеси
- •6. Диаграмма состояния
- •6.1. Построение диаграмм состояния (равновесия)
- •6.2. Правило отрезков или правило рычага
- •6.3. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов ( I рода)
- •Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии (III рода)
- •6.7. Диаграмма состояния для сплавов, испытывающих полиморфные превращения
- •6.8. Связь диаграммы состояния сплава с его свойствами
- •7 Анализ диаграммы «железо - углерод»
- •7.1. Характеристика линий и точек диаграммы Fe – Fe3c
- •Механические свойства некоторых марок серых чугунов (гост 1412-85)
- •8.2. Превращения в стали при нагреве - образование аустенита (I превращение)
- •8.4. Перлитное превращение
- •8.5. Бейнитное превращение
- •9.2. Классификация видов термической обработки
- •9.3. Способы закалки
- •9.4. Закаливаемость и прокаливаемость
- •10. Внутренние напряжения
- •11. Отпуск
- •12. Химико-термическая обработка (хто)
- •12.1. Цементация стали
- •13. Термомеханическая обработка
- •14.2. Влияние легирующих элементов на кинетику распада аустенита
- •14.5. Принципы комплексного легирования
- •14.6. Технологические особенности термической обработки легированной стали
- •15. Конструкционные материалы
- •15.1. Классификация конструкционных сталей
- •16. Инструментальные стали и сплавы
- •16.1. Режущие стали
- •16.2. Быстрорежущие стали
- •16.3. Твердые peжyщие сплавы
- •16.4. Штамповые стали
- •16.5. Стали для измерительных инструментов
- •17.2. Жаростойкие и жаропрочные стали и сплавы
- •17.3. Криогенные стали и сплавы
- •17.4. Магнитные стали и сплавы
- •17.5. Сплавы с особенностями электросопротивления
- •17.6. Сплавы с высоким электросопротивлением
- •17.7. Сплавы с заданным коэффициентом теплового расширения
- •Технические железоникелевые сплавы относятся к сталям аустенитного класса.
- •17.8. Сплавы с заданными упругими свойствами
- •18.2. Алюминиевые сплавы
- •18.5. Антифрикционные сплавы
- •Список использованных источников
- •Содержание
Аллотропические модификации металлов
Металл |
Группа |
Модификация |
Кристаллическая решетка |
|||
Кальций |
II-A |
Сa до 450 Ca 450-851 |
Кубическая гранецентрированная Гексагональная плотноупакованная |
|||
Галлий |
III-B |
Ga Ga |
Ромбическая Тетрагональная |
|||
Таллий |
III-B |
Tl до 262 Tl 262-304 |
Гексагональная плотноупакованная Кубическая объемноцентрированная |
|||
Титан |
IV-A |
Ti до 882 Ti 882-1725 |
Гексагональная плотноупакованная Кубическая объемноцентрированная |
|||
Цирконий |
IV-A |
Zr до 862 Zr 862-1830 |
Гексагональная плотноупакованная Кубическая объемноцентрированная |
|||
Гафний |
IV-A |
Hf до 1610 Hf 1610-1952 |
Гексагональная Кубическая объемноцентрированная |
|||
Олово |
IV-B |
Sn до 18 Sn 18-232 |
Алмазная Тетрагональная объемноцентрированная |
|||
Вольфрам |
VI-A |
W до 650 W 650-3400 |
Кубическая объемноцентрированная Сложная (нерасшифрованная) |
|||
Уран |
VI-A |
U до 660 U 660-770 U 770- 1133 |
Ромбоэдрическая Тетрагональная Кубическая объемноцентрированная |
|||
Марганец |
VII-A |
Mn до 742 Mn 742-1080 Mn 1080-1180 Mn 1180-1242 |
Кубическая сложная « « Тетрагональная гранецентрированная Неизвестна |
|||
Железо |
VIII |
Fe до 910 1401-1539 Fe 910-1401 |
Кубическая объемноцентрированная
Кубическая гранецентрированная |
|||
Кобальт |
VIII |
Co до 477 Co 477-1490 |
Гексагональная плотноупакованная Кубическая гранецентрированная |
Аллотропические формы обозначаются греческими буквами , , и т.д., которые в виде индексов добавляют к символу, обозначающему элемент. Аллотропическая форма при самой низкой температуре, обозначается буквой , следующая - и т. д.
Явление полиморфизма основано на едином законе об устойчивости состояния с наименьшим запасом энергии. Запас свободной энергии зависит от температуры. Поэтому в одном интервале температур более устойчивой является одна модификация, а в другом – другая. Температура, при которой осуществляется переход из одной модификации в другую, носит название температуры полиморфного (аллотропического) превращения.
Механизм роста кристаллов новой фазы может быть нормальным кристаллизационным и мартенситным. Нормальный механизм роста – это зарождение новой фазы на границах зерен, блоков, фрагментов при малых степенях переохлаждения (Sn Sn).
Мартенситный механизм реализуется при низких температурах и большой степени переохлаждения, при малой диффузионной подвижности атомов путем их сдвига (смещения) по определенным кристаллографическим плоскостям и направлениям. Новая фаза имеет форму игл и растет очень быстро (Co Co).
Аллотропическое превращение сопровождается изменением свойств, объема и появлением внутренних напряжений.
3. КРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ И СПЛАВОВ
3.1. Энергетические условия процесса кристаллизации
В зависимости от температуры любое вещество (система) может быть в твердом, жидком или в газообразном состояниях. В физической химии системой называют совокупность индивидуальных веществ (химические элементы, независимые химические соединения), между которыми или частями которых обеспечена возможность обмена энергией, а также процессов диффузии.
Вещества, которые образуют систему, называются компонентами системы. Компоненты в системе присутствуют в разных фазах.
Фазой называется однородная часть системы, ограниченная от других частей системы поверхностью раздела, при переходе через которую свойства изменяются скачком.
Процесс перехода из жидкого или газообразного состояния в твердое, в результате чего образуется кристаллическая решетка и возникают кристаллы, называется кристаллизацией.
Чем объясняется существование при одних температурах жидкого, а при других температурах твердого состояния и почему превращение происходит при строго определенных температурах?
В природе все самопроизвольно протекающие превращения, а следовательно, кристаллизация и плавление обусловлены тем, что новое состояние в новых условиях является энергетически более устойчивым, обладает меньшим запасом энергии.
Энергетическое состояние системы, имеющей огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией (F ), называемой свободной энергией, которая определяется:
F= U – TS,
где U – внутренняя энергия системы;
Т - абсолютная температура;
S - энтропия
Можно сказать, что чем больше свободная энергия системы, тем система менее устойчива, и если имеется возможность, то система переходит в состояние, где свободная энергия меньше.
С изменением внешних условий, например температуры, свободная энергия системы изменяется по сложному закону, но различно для жидкого и твердого состояний (рис. 3.1).
Рис. 3.1. Изменение свободной энергии жидкого и кристаллического состояний в зависимости от температуры
Выше температуры Тs меньшей свободной энергией обладает вещество в жидком состоянии, ниже Ts – вещество в твердом состоянии. Следовательно, выше Ts вещество должно находиться в жидком состоянии, а ниже Ts – в твердом, кристаллическом.
Очевидно, что при температуре, равной Ts свободные энергии жидкого и твердого состояний равны, металл в обоих состояниях находится в равновесии. Эта температура Ts и есть равновесная или теоретическая температура кристаллизации. Однако, при Ts Fж = Fкр, и процесс кристаллизации (плавления) не может идти, так как при равенстве свободных энергий обеих фаз плавление (кристаллизация) не будут сопровождаться уменьшением свободной энергии.
Для начала кристаллизации необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Их кривых (рис. 3.1) видно, что это возможно только тогда, когда жидкость будет охлаждена ниже точки Ts.
Температура, при которой практически начинается кристаллизация, может быть названа фактической температурой кристаллизации.
Охлаждение жидкости ниже температуры кристаллизации называется переохлаждением.
Обратное превращение из кристаллического состояния в жидкое может произойти только выше температуры Ts, это явление называется перенагреванием.
Величиной или степенью переохлаждения называют разность между теоретической и фактической температурами кристаллизации T = Ts - Tф.
Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах время – температура (рис. 3.2).
Рис. 3.2. Кривые охлаждения, полученные при кристаллизации металла
Охлаждение металла в жидком состоянии сопровождается плавным понижением температуры и может быть названо простым охлаждением, так как при этом нет качественного изменения состояния. При достижении температур кристаллизации на кривой температура – время появляются горизонтальные площадки (рис.3.2), так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации.