
- •2. Атомно-кристаллическое строение металлов
- •Строение реальных кристаллов
- •Аллотропические модификации металлов
- •3.2. Механизм процесса кристаллизации
- •3.3. Аморфное состояние металлов
- •3.4. Реальная форма кристаллических образований
- •3.5. Получение монокристаллов
- •3.6. Жидкие кристаллы
- •3.7. Строение стального слитка
- •3.8. Методы исследования структуры
- •4.2.2. Твердость – способность материалов сопротивляться пластической или упругой деформации при внедрении в него более твердого тела, которое называется индентором.
- •4.3. Конструкционная прочность металлов и сплавов
- •4.4. Пути повышения прочности металлов
- •4.5. Влияние нагрева на строение и свойства деформированного металла (рекристаллизация)
- •5.2. Химические соединения
- •5.3. Электронные соединения (фазы Юм – Розари)
- •5.4. Механические смеси
- •6. Диаграмма состояния
- •6.1. Построение диаграмм состояния (равновесия)
- •6.2. Правило отрезков или правило рычага
- •6.3. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов ( I рода)
- •Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии (III рода)
- •6.7. Диаграмма состояния для сплавов, испытывающих полиморфные превращения
- •6.8. Связь диаграммы состояния сплава с его свойствами
- •7 Анализ диаграммы «железо - углерод»
- •7.1. Характеристика линий и точек диаграммы Fe – Fe3c
- •Механические свойства некоторых марок серых чугунов (гост 1412-85)
- •8.2. Превращения в стали при нагреве - образование аустенита (I превращение)
- •8.4. Перлитное превращение
- •8.5. Бейнитное превращение
- •9.2. Классификация видов термической обработки
- •9.3. Способы закалки
- •9.4. Закаливаемость и прокаливаемость
- •10. Внутренние напряжения
- •11. Отпуск
- •12. Химико-термическая обработка (хто)
- •12.1. Цементация стали
- •13. Термомеханическая обработка
- •14.2. Влияние легирующих элементов на кинетику распада аустенита
- •14.5. Принципы комплексного легирования
- •14.6. Технологические особенности термической обработки легированной стали
- •15. Конструкционные материалы
- •15.1. Классификация конструкционных сталей
- •16. Инструментальные стали и сплавы
- •16.1. Режущие стали
- •16.2. Быстрорежущие стали
- •16.3. Твердые peжyщие сплавы
- •16.4. Штамповые стали
- •16.5. Стали для измерительных инструментов
- •17.2. Жаростойкие и жаропрочные стали и сплавы
- •17.3. Криогенные стали и сплавы
- •17.4. Магнитные стали и сплавы
- •17.5. Сплавы с особенностями электросопротивления
- •17.6. Сплавы с высоким электросопротивлением
- •17.7. Сплавы с заданным коэффициентом теплового расширения
- •Технические железоникелевые сплавы относятся к сталям аустенитного класса.
- •17.8. Сплавы с заданными упругими свойствами
- •18.2. Алюминиевые сплавы
- •18.5. Антифрикционные сплавы
- •Список использованных источников
- •Содержание
14.2. Влияние легирующих элементов на кинетику распада аустенита
Некарбидообразующие элементы, кроме Со, замедляют кинетику распада аустенита (рис.14.3,а).
Карбидообразующие элементы вносят не только количественные, но качественные изменения в кинетику изотермического превращения аустенита (рис.14.3,б).
Рис. 14.3. Диаграммы изотермического распада аустенита:
а – углеродистая (1) и легированная некарбидообразующими элементами (2);б – углеродистая (1) и легированная карбидообразующими элементами (2)
Наиболее важной способностью легирующих элементов является замедление скорости распада аустенита в районе перлитного превращения (смещение линии вправо). Это снижает критическую скорость закалки и способствует глубокой прокаливаемости.
Сильно увеличивается прокаливаемость стали при легировании Cr, Ni, Mo, Mn, и особенно она увеличивается при совместном легировании несколькими элементами (Cr + Ni + Mo).
Эффективно влияют на прокаливаемость малое количество бора (оптимально 0,002 - 0,006 %). При большом содержании бора образуются бориды и прокаливаемость уменьшается.
14.3 Влияние легирующих элементов на мартенситное превращение
Легирующие элементы, меняя температурный интервал Мн и Мк (рис.14.4), уменьшают или увеличивают количество остаточного аустенита.
Все легирующие элементы уменьшают склонность аустенитного зерна к росту; исключение составляют марганец (Мn) и бор (В).
Рис. 14.4. Влияние легирующих элементов на температуру мартенситного превращения (а) и количество остаточного аустенита в стали с 1,0 % С (б)
Легирующие элементы замедляют распад мартенсита при отпуске (весьма существенно Сг, Mо, Si, Ti) и повышают температуры фазовых превращений, тем самым повышая красностойкость стали.
14.4. Классификация легированных сталей
Классификация легированных сталей производится по следующим признакам:
- по равновесной структуре;
- по структуре после охлаждения на воздухе;
- по составу;
- по назначению.
По равновесной структуре легированные стали делятся на:
- доэвтектоидные стали, имеющие в структуре избыточный феррит;
- эвтектоидные, имеющие перлитную структуру;
- заэвтектоидные, имеющие в структуре избыточный вторичный карбид;
- ледебуритные стали, имеющие в структуре первичные карбиды, выделяющиеся из жидкой фазы.
Пример: При содержании 5 % Сr сталь с 0,6 % С является заэвтектоидной, а с 1,5 % С - ледебуритной.
По структуре после охлаждения на воздухе (рис.14.5) выделяют три основных класса легированных сталей: перлитный, мартенситный, аустенитный.
Рис. 14.5. Диаграмма изотермического распада аустенита сталей:
а - перлитного класса (0,1 - 1,5 % С), содержащих менее 5 - 7 % легирующих элементов; б - мартенситного класса (0,3 - 0,6 % С), содержащих 10 - 15 % легирующих элементов; в - аустенитного класса (0,1 - 0,5 % С), содержащих более 15 % легирующих элементов
По составу стали делятся на:
- никелевые;
- хромистые;
- кремнистые;
- хромоникельмолибденовые.
По назначению легированные стали делятся на:
- конструкционные (цементуемые, улучшаемые), строительные низколегированные;
- инструментальные: для режущего инструмента (быстрорежущие); для штампового инструмента; для мерительного инструмента;
- стали и сплавы с особыми свойствами: нержавеющие, жаростойкие, теплостойкие, с особенностями теплового расширения, с особыми магнитными свойствами.