- •Раздел iТрансформаторы;
- •III Машины постоянного тока……………………….………………………………...….71
- •I Трансформаторы
- •Устройство трансформатора
- •1.1.1. Шихтовка железа стержневого трансформатора
- •1.2.Однофазные трансформаторы. Холостой ход однофазного трансформатора
- •1.2.1.Ток холостого хода
- •1.2.2.Потери при холостом ходе трансформатора
- •1.2.3.Схема замещения трансформатора при холостом ходе
- •1.2.4.Определение параметров экспериментально zm, xm,rm
- •1.3. Работа однофазного трансформатора под нагрузкой
- •1.3.1 Физические процессы в трансформаторе при нагрузке
- •1.3.2. Векторная диаграмма трансформатора при нагрузке
- •1.3.3. Схема замещения трансформатора при нагрузке
- •Режим короткого замыкания однофазного трансформатора
- •Векторная диаграмма трансформатора при коротком замыкании
- •Трехфазные трансформаторы
- •Группы соединения трансформаторов
- •Холостой ход трехфазного трансформатора
- •Групповой трансформатор
- •1.7.2. Трехстержневой трансформатор
- •1.8. Параллельная работа трансформаторов
- •1.8.1. Параллельная работа трансформаторов при неравенстве коэффициентов трансформации
- •1.8.2. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •1.9. Переходные режимы трансформаторов
- •Переходный процесс при включении трансформатора в холостую
- •Переходный процесс при коротком замыкании трансформатора
- •Переходные процессы, вызванные перенапряжением
- •II Асинхронные машины
- •2.1. Устройство и принцип действия асинхронного двигателя
- •2.1.1. Принцип создания вращающего магнитного поля статорной обмоткой
- •2.1.2. Принцип действия асинхронного двигателя
- •2.2. Общие вопросы машин переменного тока
- •2.2.1. Обмотки машин переменного тока
- •Элементы обмоток переменного тока
- •Пример выполнения однослойной обмотки
- •2.2.2. Электродвижущая сила (эдс) обмотки машин переменного тока
- •2.2.3. Намагничивающая сила обмоток машин переменного тока
- •2.3. Рабочий процесс асинхронного двигателя
- •2.3.1. Режимы работы асинхронной машины
- •2.3.2. Режим двигателя
- •2.3.3. Трехфазная асинхронная машина при вращающемся роторе
- •2.3.4. Привидение параметров роторной обмотки к статорной
- •2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
- •Запишем выражение для тока ротора
- •2.3.6. Схема замещения роторной цепи
- •2.3.7. Векторная диаграмма асинхронного двигателя
- •2.3.8. Схемы замещения асинхронной машины
- •Г-образная схема замещения
- •2.4. Вращающий момент асинхронной машины
- •2.4.1. Вращающий (электромагнитный) момент асинхронной машины
- •2.4.2. Максимальный (критический) момент
- •Знак - - соответствует генераторному режиму
- •2.4.3. Расчетная формула момента
- •2.4.4. Влияние высших гармоник магнитного поля на работу асинхронной машины
- •Задавшись током i1
- •2.6. Пуск трехфазных асинхронных двигателей
- •2.6.1. Пуск под номинальным напряжением (прямой пуск) Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
- •2.6.2. Пуск при пониженном напряжении
- •2.6.3. Пуск двигателя с фазным ротором
- •2.7. Асинхронные двигатели с обмоткой ротора специального исполнения
- •2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе
- •Кратность пускового тока
- •2.7.2. Короткозамкнутый асинхронный двигатель с двойной клеткой на роторе
- •2.8. Регулирование частоты вращения асинхронных двигателей
- •2.8.1. Регулирование частоты вращения двигателя изменением частоты
- •2.8.2. Регулирование частоты вращения двигателя путем изменения числа пар полюсов
- •2.8.3. Регулирование частоты вращения двигателя сопротивлением в цепи ротора (с фазным ротором)
- •2.8.4. Регулирование частоты вращения изменением подводимого напряжения
- •2.9. Асинхронная машина в качестве генератора
- •Докажем это аналитически. Ток в роторе
- •2.9.1. Векторная диаграмма асинхронного генератора
- •2.9.2. Однофазный двигатель
- •III Машины постоянного тока
- •3.1. Устройство и принцип действия машин постоянного тока
- •3.2. Обмотки якоря машин постоянного тока
- •Основные требования предъявляемые к обмотке
- •3.2.1. Простая петлевая обмотка
- •3.2.2. Простая волновая обмотка
- •3.2.3. Сложно-петлевая обмотка
- •3.2.4. Сложно-волновые обмотки
- •3.2.5. Симметрия обмоток
- •3.2.6. Смешанная (лягушечная) обмотка
- •3.3. Эдс обмотки якоря
- •3.4. Реакция якоря в машинах постоянного тока
- •3.5. Генераторы постоянного тока
- •Энергетическая диаграмма генератора независимого возбуждения.
- •Электромагнитный момент генератора постоянного тока
- •3.5.1. Генератор независимого возбуждения
- •Свойства генератора определяются его характеристиками. 1.Характеристика холостого хода: , ,
- •3.5.2. Генератор параллельного возбуждения
- •3.5.3. Генератор последовательного возбуждения
- •3.5.4. Генератор смешанного возбуждения Генератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
- •3.6. Двигатели постоянного тока
- •3.6.1. Энергетическая диаграмма двигателя постоянного тока
- •3.6.2. Пуск двигателей постоянного тока
- •3.6.3. Реверсирование двигателя постоянного тока
- •3.6.4. Классификация двигателей постоянного тока
- •Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 43. Для пуска используется пусковой реостат (п. Р.). Свойства двигателя определяются его характеристиками.
- •Основное уравнение движения электропривода .
- •3.6.5. Регулирование частоты вращения двигателей постоянного тока
- •3.7. Коммутация двигателя
- •3.7.1 Закон изменения тока в коммутируемой секции
- •3.7.2. Прямолинейная коммутация
- •3.7.3. Замедленная коммутация
- •3.7.4. Ускоренная коммутация
- •3.7.5. Определение реактивной эдсer
- •3.7.6. Способы улучшения коммутации
- •3.7.7. Круговой огонь в машинах постоянного тока
- •IV Синхронные машины
- •4.1. Назначение, устройство и принцип действия
- •4.2. Работа генератора при холостом ходе
- •4.3. Реакция якоря в синхронном явнополюсном генераторе
- •4.3.1. Реакция якоря при активной нагрузке
- •4.3.2. Реакция якоря при индуктивной нагрузке
- •4.3.3. Реакция якоря при емкостной нагрузке
- •4.3.4. Реакция якоря при смешанной нагрузке
- •4.4. Магнитное рассеяние
- •4.5. Рабочий процесс синхронной машины
- •4.5.1. Основная диаграмма эдс явнополюсного синхронного генератора
- •4.5.2. Преобразованная диаграмма эдс явнополюсной синхронной машины
- •4.6. Определение параметров синхронной машины со снятыми характеристиками
- •4.6.1. Определение индуктивного ненасыщенного сопротивления Xd
- •4.6.2. Определение параметра Xd насыщенного
- •4.6.3. Определение параметра Xq
- •4.6.4. Определение параметров Xq и Xd методом скольжения
- •4.6.5. Определение параметра Xs
- •4.7. Понятие о сверхпереходных и переходных индуктивных сопротивлениях
- •4.8. Диаграммы намагничивающих сил
- •4.9. Параллельная работа синхронных генераторов
- •4.9.1. Параллельная работа генераторов при неравенстве напряжений
- •4.9.2. Параллельная работа генераторов при
- •4.10. Синхроноскопы
- •4.10.1. Включение генератора параллельно сети на погасание ламп
- •4.10.2. Включение генератора параллельно сети на бегущий свет
- •4.11. Электромагнитная мощность и момент
- •4.12. Режимы работы синхронной машины параллельно с сетью
- •Методы регулирования реактивной и активной мощности генератора.
- •4.13. Синхронные двигатели
- •4.13.1. Векторные диаграммы синхронного двигателя
- •4.13.2 Угловые характеристики синхронного двигателя
- •4.13.3. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения
- •4.13.4. Пуск синхронного двигателя
3.5.3. Генератор последовательного возбуждения
О
бмотка
возбуждения у генератора включена
последовательно с якорем. Ток возбуждения
равен току якоря -
.
При независимом возбуждении можно снять характеристику холостого хода. В обычной схеме, (рис. 34) можно снять только восходящую внешнюю характеристику. Генератор последовательного возбуждения не нашел практического применения.

3.5.4. Генератор смешанного возбуждения Генератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
1.
Характеристика холостого хода
,
,
.
При
холостом ходе ток якоря равен нулю,
поэтому обмотка возбуждения
не создает потока. Следовательно,
характеристика холостого хода аналогична
генератору параллельного возбуждения.
2
.
Нагрузочная характеристика
,![]()
Нагрузочная характеристика (3) для генератора параллельного возбуждения.
Нагрузочная характеристика (2) для генератора смешанного возбуждения при согласном направлении токов. Поэтому, последовательная обмотка играет роль компенсатора реакции якоря и характеристика (2) проходит выше характеристики холостого хода.
3.
Внешняя характеристика
,
,
.![]()
У
генератора смешанного возбуждения при
различном соотношении и направлении
потоков можно получить характеристики
различного вида.
Если
потребители находятся вдали от генератора,
то обмотку возбуждения
по току выполняют значительной, что
дает повышенное напряжение с учетом
падения напряжения в сети (характеристика
1). Для нормального режима используется
характеристика 2.
Х
арактеристика
3 – экскаваторная характеристика,
которая получена при встречном включении
обмоток.
4.
Регулировочная характеристика
,
.
Регулировочные характеристики практически можно снять, соответственно внешним характеристикам 1 и 2.
якоря
.
Электромагнитный момент
.
3.6. Двигатели постоянного тока
Д
вигатели
постоянного тока широко используются
в различных системах электропривода,
где требуется широкий диапазон
регулирования частоты вращения. Двигатель
постоянного тока преобразовывает
потребляемую электрическую энергию в
механическую на валу, хотя машина
постоянного тока обратима. Покажем
принцип перевода генератора в режим
двигателя, рис. 36.
Для
генератора
,
откуда ток генератора
.
С
увеличением сопротивления
ток
уменьшается, следовательно, уменьшится![]()
и
ток
.
При дальнейшем увеличении![]()
![]()
будет
равна напряжению U
И
ток генератора
будет равен нулю. Далее с увеличением
ток
уменьшится, а, следовательно, уменьшится
и![]()
.
При этом
и ток из сети сменит направление, а
машина перейдет в двигательный режим.
Уравнение равновесного состояния
для двигателя:
,![]()
,
,
тогда
.
![]()
![]()
Получено
уравнение скоростной характеристики
двигателя постоянного тока. Уравнение
моментов для двигателя записывается:
.
3.6.1. Энергетическая диаграмма двигателя постоянного тока

- электрическая
потребляемая мощность двигателем
- электромагнитная
мощность
- механическая
мощность
- потери в обмотке
возбуждения
- общий ток из сети
.
.
![]()
:
на ток
.
,
откуда
![]()
3.6.2. Пуск двигателей постоянного тока
У
равнение
равновесного состояния
двигателя
,
откуда ток
равен:
.
П
ри
пуске двигателя
,следовательно
и пусковой ток
может быть больше номинального в
раз. Это может привести к круговому огню
на коллекторе и механической поломке
двигателя. Поэтому, для ограничения
пускового тока до
используют пусковые реостаты, либо
пусковые станции и ток при этом равен
.
По
мере разгона якоря в нем наводится,
и ток якоря уменьшается. Поэтому, после
разгона якоря пусковые сопротивления
в цепи якоря выводятся. Схема контактного
пуска представлена на рис. 38.
В
ременная
диаграмма пуска двигателя представлена
на рис. 39.
Пуск по пусковым характеристикам представлен на рис. 40.
Для пуска двигателей небольшой мощности используют пусковые реостаты. Схема пускового реостата представлена на рис. 41.
При пуске движок реостата находится в положении (1), после пуска в положении (2).
