- •Раздел iТрансформаторы;
- •III Машины постоянного тока……………………….………………………………...….71
- •I Трансформаторы
- •Устройство трансформатора
- •1.1.1. Шихтовка железа стержневого трансформатора
- •1.2.Однофазные трансформаторы. Холостой ход однофазного трансформатора
- •1.2.1.Ток холостого хода
- •1.2.2.Потери при холостом ходе трансформатора
- •1.2.3.Схема замещения трансформатора при холостом ходе
- •1.2.4.Определение параметров экспериментально zm, xm,rm
- •1.3. Работа однофазного трансформатора под нагрузкой
- •1.3.1 Физические процессы в трансформаторе при нагрузке
- •1.3.2. Векторная диаграмма трансформатора при нагрузке
- •1.3.3. Схема замещения трансформатора при нагрузке
- •Режим короткого замыкания однофазного трансформатора
- •Векторная диаграмма трансформатора при коротком замыкании
- •Трехфазные трансформаторы
- •Группы соединения трансформаторов
- •Холостой ход трехфазного трансформатора
- •Групповой трансформатор
- •1.7.2. Трехстержневой трансформатор
- •1.8. Параллельная работа трансформаторов
- •1.8.1. Параллельная работа трансформаторов при неравенстве коэффициентов трансформации
- •1.8.2. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •1.9. Переходные режимы трансформаторов
- •Переходный процесс при включении трансформатора в холостую
- •Переходный процесс при коротком замыкании трансформатора
- •Переходные процессы, вызванные перенапряжением
- •II Асинхронные машины
- •2.1. Устройство и принцип действия асинхронного двигателя
- •2.1.1. Принцип создания вращающего магнитного поля статорной обмоткой
- •2.1.2. Принцип действия асинхронного двигателя
- •2.2. Общие вопросы машин переменного тока
- •2.2.1. Обмотки машин переменного тока
- •Элементы обмоток переменного тока
- •Пример выполнения однослойной обмотки
- •2.2.2. Электродвижущая сила (эдс) обмотки машин переменного тока
- •2.2.3. Намагничивающая сила обмоток машин переменного тока
- •2.3. Рабочий процесс асинхронного двигателя
- •2.3.1. Режимы работы асинхронной машины
- •2.3.2. Режим двигателя
- •2.3.3. Трехфазная асинхронная машина при вращающемся роторе
- •2.3.4. Привидение параметров роторной обмотки к статорной
- •2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
- •Запишем выражение для тока ротора
- •2.3.6. Схема замещения роторной цепи
- •2.3.7. Векторная диаграмма асинхронного двигателя
- •2.3.8. Схемы замещения асинхронной машины
- •Г-образная схема замещения
- •2.4. Вращающий момент асинхронной машины
- •2.4.1. Вращающий (электромагнитный) момент асинхронной машины
- •2.4.2. Максимальный (критический) момент
- •Знак - - соответствует генераторному режиму
- •2.4.3. Расчетная формула момента
- •2.4.4. Влияние высших гармоник магнитного поля на работу асинхронной машины
- •Задавшись током i1
- •2.6. Пуск трехфазных асинхронных двигателей
- •2.6.1. Пуск под номинальным напряжением (прямой пуск) Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
- •2.6.2. Пуск при пониженном напряжении
- •2.6.3. Пуск двигателя с фазным ротором
- •2.7. Асинхронные двигатели с обмоткой ротора специального исполнения
- •2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе
- •Кратность пускового тока
- •2.7.2. Короткозамкнутый асинхронный двигатель с двойной клеткой на роторе
- •2.8. Регулирование частоты вращения асинхронных двигателей
- •2.8.1. Регулирование частоты вращения двигателя изменением частоты
- •2.8.2. Регулирование частоты вращения двигателя путем изменения числа пар полюсов
- •2.8.3. Регулирование частоты вращения двигателя сопротивлением в цепи ротора (с фазным ротором)
- •2.8.4. Регулирование частоты вращения изменением подводимого напряжения
- •2.9. Асинхронная машина в качестве генератора
- •Докажем это аналитически. Ток в роторе
- •2.9.1. Векторная диаграмма асинхронного генератора
- •2.9.2. Однофазный двигатель
- •III Машины постоянного тока
- •3.1. Устройство и принцип действия машин постоянного тока
- •3.2. Обмотки якоря машин постоянного тока
- •Основные требования предъявляемые к обмотке
- •3.2.1. Простая петлевая обмотка
- •3.2.2. Простая волновая обмотка
- •3.2.3. Сложно-петлевая обмотка
- •3.2.4. Сложно-волновые обмотки
- •3.2.5. Симметрия обмоток
- •3.2.6. Смешанная (лягушечная) обмотка
- •3.3. Эдс обмотки якоря
- •3.4. Реакция якоря в машинах постоянного тока
- •3.5. Генераторы постоянного тока
- •Энергетическая диаграмма генератора независимого возбуждения.
- •Электромагнитный момент генератора постоянного тока
- •3.5.1. Генератор независимого возбуждения
- •Свойства генератора определяются его характеристиками. 1.Характеристика холостого хода: , ,
- •3.5.2. Генератор параллельного возбуждения
- •3.5.3. Генератор последовательного возбуждения
- •3.5.4. Генератор смешанного возбуждения Генератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
- •3.6. Двигатели постоянного тока
- •3.6.1. Энергетическая диаграмма двигателя постоянного тока
- •3.6.2. Пуск двигателей постоянного тока
- •3.6.3. Реверсирование двигателя постоянного тока
- •3.6.4. Классификация двигателей постоянного тока
- •Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 43. Для пуска используется пусковой реостат (п. Р.). Свойства двигателя определяются его характеристиками.
- •Основное уравнение движения электропривода .
- •3.6.5. Регулирование частоты вращения двигателей постоянного тока
- •3.7. Коммутация двигателя
- •3.7.1 Закон изменения тока в коммутируемой секции
- •3.7.2. Прямолинейная коммутация
- •3.7.3. Замедленная коммутация
- •3.7.4. Ускоренная коммутация
- •3.7.5. Определение реактивной эдсer
- •3.7.6. Способы улучшения коммутации
- •3.7.7. Круговой огонь в машинах постоянного тока
- •IV Синхронные машины
- •4.1. Назначение, устройство и принцип действия
- •4.2. Работа генератора при холостом ходе
- •4.3. Реакция якоря в синхронном явнополюсном генераторе
- •4.3.1. Реакция якоря при активной нагрузке
- •4.3.2. Реакция якоря при индуктивной нагрузке
- •4.3.3. Реакция якоря при емкостной нагрузке
- •4.3.4. Реакция якоря при смешанной нагрузке
- •4.4. Магнитное рассеяние
- •4.5. Рабочий процесс синхронной машины
- •4.5.1. Основная диаграмма эдс явнополюсного синхронного генератора
- •4.5.2. Преобразованная диаграмма эдс явнополюсной синхронной машины
- •4.6. Определение параметров синхронной машины со снятыми характеристиками
- •4.6.1. Определение индуктивного ненасыщенного сопротивления Xd
- •4.6.2. Определение параметра Xd насыщенного
- •4.6.3. Определение параметра Xq
- •4.6.4. Определение параметров Xq и Xd методом скольжения
- •4.6.5. Определение параметра Xs
- •4.7. Понятие о сверхпереходных и переходных индуктивных сопротивлениях
- •4.8. Диаграммы намагничивающих сил
- •4.9. Параллельная работа синхронных генераторов
- •4.9.1. Параллельная работа генераторов при неравенстве напряжений
- •4.9.2. Параллельная работа генераторов при
- •4.10. Синхроноскопы
- •4.10.1. Включение генератора параллельно сети на погасание ламп
- •4.10.2. Включение генератора параллельно сети на бегущий свет
- •4.11. Электромагнитная мощность и момент
- •4.12. Режимы работы синхронной машины параллельно с сетью
- •Методы регулирования реактивной и активной мощности генератора.
- •4.13. Синхронные двигатели
- •4.13.1. Векторные диаграммы синхронного двигателя
- •4.13.2 Угловые характеристики синхронного двигателя
- •4.13.3. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения
- •4.13.4. Пуск синхронного двигателя
2.3.3. Трехфазная асинхронная машина при вращающемся роторе
При рассмотрении этого вопроса мы увидим, что частота ротора, ЭДС и индуктивное сопротивление с изменением скорости вращения ротора не остаются постоянными. Запишем выражение ЭДС неподвижного ротора:
![]()
для вращающего ротора
![]()
где f2 – частота ЭДС ротора
![]()
![]()
тогда
![]()
![]()
т.е. ЭДС ротора при вращении равна ЭДС неподвижного ротора на скольжение и частота ротора равна частоте неподвижного ротора (f1) на скольжение.
Индуктивное сопротивление ротора при неподвижном состоянии
![]()
где L2– индуктивность фазы ротора
при вращающемся роторе
![]()
![]()
т.е. индуктивное сопротивление вращающегося ротора равно индуктивному сопротивлению при неподвижном роторе на скольжение.
Таким образом, видим, что частота, ЭДС и индуктивное сопротивление ротора зависят от скольжения. Теперь можно записать выражение для тока ротора:
![]()
Т
ок
ротора будет создавать магнитный поток.
Посмотрим, с какой скоростью будет вращаться магнитный поток созданный током ротора I2по отношению к ротору.
![]()
Посмотрим, с какой скоростью будет вращаться магнитный поток ротора по отношению к неподвижному статору т.к.
![]()
Видим, что поле ротора независимо от
скольжения по отношению к неподвижному
статору вращается с синхронной скоростью,
а поле статора так же вращается с
синхронной скоростью по отношению к
неподвижному статору. Поэтому в
пространстве поле статора и ротора
неподвижны между собой. Только при этом
условии возможно взаимодействие. Ток
ротора создает намагничивающую силу
,
по закону Ленца она направлена против
намагничивающей силы статора. Поэтому
уравнение н.с. запишется
.
При холостом ходе ток равен I0, по мере нагрузки E2увеличивается, растет и I2, увеличивается F2и поток ротора, который размагничивает поток статор, что приводит к уменьшению ЭДС Е1и к увеличению тока I1до такой величины, чтобы скомпенсировать размагничивающий поток ротора и обеспечить постоянство потока.
2.3.4. Привидение параметров роторной обмотки к статорной
Под приведенной роторной обмоткой понимается такая эквивалентная роторная обмотка, которая имеет такое же число фаз, такое же число витков, как и обмотка статора.
Приведение параметров делают для того, что наглядно можно было представить все вектора токов и напряжений на векторной диаграмме и произвести количественный анализ процессов, которые происходят в асинхронной машине.
![]()
![]()
- коэффициент трансформации по ЭДС
![]()
(полная мощность ротора до и после
привидения должна быть неизменной)
,![]()
![]()
где
- коэффициент трансформации по току.
3)
(потери в роторе до и после приведения
должны быть неизменными)
,

где
.
Для двигателей с фазным ротором![]()
,![]()
4)
(угол сдвига между ЭДС и током ротора
до и после приведения должен быть
неизменным)
,![]()
![]()
Соответственно
.
Далее во всех схемах замещения и на
векторных диаграммах будем использовать
приведенные параметры ротора.
2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
По физическому смыслу работа асинхронного двигателя аналогична трансформатору, поэтому его работу и приводят к режиму трансформатора. Но у асинхронного двигателя имеются отличия от трансформатора:
1) Ротор асинхронного двигателя вращается, а трансформатор неподвижный статический аппарат. Поэтому первой задачей будет приведение асинхронного двигателя к неподвижному состоянию.
