
- •Министерство образования Российской Федерации
- •Введение
- •Используемые единицы измерений и основные константы
- •. Строение атома
- •. Предпосылки возникновения волновой механики
- •1.1.1.Корпускулярно-волновая природа электромагнитного излучения
- •1.1.2. Теория строения атома Бора
- •1.1.3. Корпускулярно-волновой дуализм свойств материи
- •1.1.4. Принцип неопределенности
- •. Волновая (квантовая) механика
- •1.2.1.Волновое уравнение. Уравнение Шредингера
- •1.2.2.Решение уравнения Шредингера для простейших случаев
- •2. Распределение вероятности нахождения электрона в объеме потенциального ящика (плотность вероятности) определяется его энергетическим состоянием – энергией, которой обладает электрон.
- •1. Энергия электрона в трехмерном потенциальном ящике квантована.
- •2. Каждое энергетическое состояние электрона определяется набором из трех квантовых чисел.
- •. Квантово-механическая модель атома
- •1.3.1. Основное состояние атома водорода
- •1.3.2. Радиальное распределение электронной плотности. Электронная орбиталь
- •1.3.3.Возбужденные состояния атома водорода
- •1.3.4. Многоэлектронные атомы
- •1.3.5. Электронные конфигурации многоэлектронных атомов
- •1.3.6.Связь периодического закона со строением атома
- •1.3.7.Физико-химические характеристики атома
- •. Химическая связь
- •. Основные характеристики химической связи. Классификация моделей описания химической связи
- •2.1.1.Основные параметры химической связи
- •2.1.2.Типы химической связи
- •2.2. Ковалентная химическая связь
- •2.2.1. Метод валентных связей (вс)
- •Пример. Энергия и длина связи в молекуле водорода, определенные экспериментально и рассчитанные с учетом различных факторов:
- •2.2.2.Кратные связи.- и-связи
- •Пример. Характеристики химических связей различной кратности:
- •2.2.3. Геометрия простейших молекул. Гибридизация ао
- •Примеры различных случаев гибридизации.
- •2.2.4. Донорно-акцепторный механизм образования ковалентной связи
- •2.2.5.Метод молекулярных орбиталей (мо)
- •Пример 1. Распределение валентных электронов по мо молекул и молекулярных ионов элементов первого периода.
- •2.3. Полярность связи. Дипольный момент молекулы
- •Пример.
- •. Химическая связь в твердых веществах и жидкостях
- •. Агрегатные состояния
- •Температуры (с), энтальпия (н0, кДж/моль) и энтропии (s0, Дж/мольк) фазовых переходов некоторых веществ при атмосферном давлении
- •.Межмолекулярное взаимодействие
- •3.2.1.Межмолекулярные взаимодействия (силы Ван-дер-Ваальса)
- •Относительный вклад каждой составляющей в энергию межмолекулярного взаимодействия для различных молекул
- •3.2.2.Водородная связь
- •Примеры.
- •.Химическая связь в твердом теле
- •3.3.1.Основные понятия о строении кристаллов
- •3.3.2.Молекулярные кристаллы
- •3.3.3.Ковалентные (атомные) кристаллы
- •3.3.4.Ионные кристаллы. Ионный тип химической связи
- •Энергия кристаллической решетки, рассчитанная по уравнению Борна, из термодинамики и измеренная экспериментально
- •3.3.5.Металлические кристаллы. Металлическая химическая связь
- •3.3.6.Зонная модель кристаллического тела
- •3.3.7.Металлы, полупроводники и диэлектрики
- •3.3.8.Кристаллические материалы
- •Собственные дефекты:
- •3.3.9.Аморфныетвердые тела
- •.Химическая связь в жидкостях
- •3.4.1.Жидкое состояние вещества
- •3.4.2.Жидкие кристаллы
- •Библиографический список
- •Основы общей химии
- •Часть 1. Строение вещества
- •190005, С-Петербург, 1-я Красноармейская ул., д.1
1.3.6.Связь периодического закона со строением атома
В 1869 г. Дмитрий Иванович Менделеев сформулировал Периодический закон, согласно которому свойства простых веществ, а также свойства соединений находятся в периодической зависимости от атомного веса. Но уже сам Д. И. Менделеев отмечал, что, конечно, не атомный вес является причиной периодической зависимости свойств и что в будущем при изучении строения атома будет вскрыта истинная причина этой зависимости.
Заполнение электронных орбиталей при увеличении заряда ядра и соответственно числа электронов происходит в следующей последовательности:
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p…
Максимальное число электронов в каждом состоянии с учетом принципа Паули равно:
s – 2, p – 6, d – 10, f – 14.
Если расположить последовательность энергетических состояний так, чтобы каждая строка начиналась новым значением главного квантового числа n и сосчитать число электронов в этих энергетических состояниях, то получим следующую таблицу:
Электронные состояния |
Число электронов | |||
1s |
|
|
|
2 |
2s |
|
|
2p |
8 |
3s |
|
|
3p |
8 |
4s |
|
3d |
4p |
18 |
5s |
|
4d |
5p |
18 |
6s |
4f |
5d |
6p |
32 |
Последовательность энергетических состояний электронов в многоэлектронных атомах соответствует структуре периодической системы элементов Д. И. Менделеева. То есть периодическое повторение свойств элементов и их химических соединений обусловлено периодичностью повторения их электронных структур. Таким образом, в современной формулировке Периодический закон гласит: свойства химических элементов, а также формы и свойства, образуемых им соединений находятся в периодической зависимости от величины заряда ядер их атомов.
Максимальное главное квантовое число электронов в многоэлектронных атомах совпадает с номером периода, в котором располагается данный элемент в периодической таблице.
Часто при описании электронного строения атома используется понятие «внешний электронный слой», который включает в себя электроны с максимальным значением главного квантового числа. Например, для элементов шестого периода внешний слой образуют электроны с n=6 (6s и 6p), а электроны в 4f и 5d-состояниях относятся к «внутренним электронным слоям».
В зависимости от типа орбитали, которую занимает последний добавленный электрон при построении электронной конфигурации, в периодической таблице выделяют группы элементов: s-элементы (по два в каждом периоде); p-элементы (по шесть в каждом периоде, начиная со второго); d-элементы (по 10 в каждом периоде, начиная с четвертого); f-элементы (по 14 в каждом периоде, начиная с шестого).
Химические свойства элементов обусловлены не всеми электронами атома, а только валентными. Валентные электроны – электроны, принимающие участие в образовании химической связи. Валентными могут быть электроны внешнего и незаполненных внутренних слоев.
В группах элементы имеют одинаковые валентные электроны (по качеству и количеству), что и обусловливает схожесть их физических и химических свойств. Но, вследствие того, что валентные электроны для элементов в группах обладают различной энергией (увеличение главного квантового числа в группе сверху вниз), наблюдаются различия в их схожих физических и химических свойствах.
По тому, какие валентные электроны имеют атомы, можно условно выделить четыре класса элементов.
Благородные (инертные) газы. Эти элементы имеют полностью заполненные электронные слои. Общая электронная формула: 1s2 – для гелия и ns2np6 – для остальных элементов. Эти элементы химически не активны.
Типичные (типические) элементы. Это s- и p-элементы, которые имеют незаполненный внешний слой (главные группы периодической таблицы). Общая электронная формула: от ns1 – первая группа до ns2np5 – седьмая группа. Их химические и физические свойства сильно различаются в периоде в зависимости от числа валентных электронов. Химические свойства этих элементов определяются в основном стремлением получить, отдать или обобществить электроны таким образом, чтобы приобрести электронную конфигурацию с полностью заполненными энергетическими состояниями.
Переходные элементы – d-элементы. У них происходит заполнение электронами внутреннего слоя, что объясняет значительное сходство свойств элементов внутри периода, особенно физических.
f-элементы. Особенностью этих элементов является большое сходство как по физическим, так и по химическим свойствам внутри периода по сравнению с элементами других классов.