
- •Часть 3
- •Введение
- •1. Электрохимические процессы
- •Пример. Окисление олова ионами меди:
- •1.1. Основные понятия и определения
- •Пример. Анод – цинк, находящийся в контакте с раствором сульфата цинка; катод – медь, находящаяся в контакте с сульфатом меди:
- •1.2. Электродные процессы
- •1.2.1. Скачок потенциала на границе «металл – электролит»
- •1.2.2. Уравнение Нернста
- •1.2.3. Электроды
- •Пример. Хлорсеребряный электрод Cl-AgCl,Ag0.
- •1.2.4. Водородная шкала стандартных электродных потенциалов
- •Стандартные электродные потенциалы (0, в) и их электродные реакции
- •1.3. Неравновесные электрохимические системы
- •1.3.1. Гальванический элемент
- •1.3.2. Окислительно-восстановительные реакции в водных растворах
- •1.3.3. Электролиз
- •1.4. Кинетика электрохимических процессов
- •1.4.1. Скорость электрохимических процессов
- •1.4.2. Поляризация электродов
- •1.5. Практическое использование электрохимических процессов
- •1.5.1. Химические источники тока
- •Характеристики химических источников тока
- •Примеры.1. Марганцево-цинковый элемент.
- •1.5.2. Применение электролиза
- •2. Коррозия и защита металлов
- •2.1. Основные понятия и определения
- •2.2. Классификация коррозионных процессов
- •2.3. Химическая коррозия
- •2.3.1. Высокотемпературная газовая коррозия
- •2.3.2. Кинетика роста оксидных пленок
- •2.3.3. Факторы, влияющие на скорость газовой коррозии
- •2.4. Электрохимическая коррозия
- •2.4.1. Анодные и катодные реакции
- •Контактная коррозия металлов. Если два соприкасающихся разнородных металла контактируют с электролитом, то образуется макрогальванический коррозионный элемент.
- •2.4.2. Термодинамические условия электрохимической коррозии металлов
- •2.4.3. Факторы, влияющие на скорость электрохимической коррозии
- •2.5. Коррозионные среды и влияние дополнительных факторов
- •2.5.1. Коррозионно-механическое разрушение металлов
- •2.5.2. Водородная коррозия
- •2.5.3. Радиационная коррозия
- •Библиографический список
- •Основы общей химии. Часть 3. Электрохимические и коррозионные процессы
- •190005, С.-Петербург, 1-я Красноармейская ул., д.1
2.2. Классификация коррозионных процессов
Вследствие огромного разнообразия коррозионных процессов они классифицируются по различным признакам: по характеру коррозионных разрушений металла, по составу коррозионной среды, по механизму коррозионного процесса, по характеру дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды, и т. д.
По виду, геометрическому характеру разрушений поверхности или объема металла различают сплошную (общую) и местную (локальную) коррозию.
В случае сплошной коррозии разрушению подвергается вся поверхность металлического изделия, причем она может быть равномерной (рис. 2.1, а) и неравномерной (рис. 2.1, б) в зависимости от того, одинакова ли глубина коррозионного разрушения на разных участках.
При местной коррозии (рис. 2.1, в–д) поражения локальны. Значительная часть поверхности остается практически незатронутой. В зависимости от степени локализации (соотношение поверхности и глубины проникновения коррозии) различают коррозионные пятна (разрушение отдельных участков на небольшую глубину), язвы (большая глубина поражения металла) и питтинг (точечное разрушение металла на относительно большую глубину).
Рис.
2.1. Основные виды коррозионных разрушений
поверхности металла: сплошная равномерная
(а)
и неравномерная (б)
коррозия; местная коррозия –
пятна (в),
язвы (г)
и питтинг (д)
Коррозия может приводить к микроскопическим разрушениям в металле (рис.2.2). Все металлы являются поликристаллическими материалами, состоящими из большого числа произвольно ориентированных относительно друг друга мелких монокристаллов (зерно металла) одинакового или разного химического состава. Часто коррозионные процессы развиваются на границах зерен металла, продвигаясь в глубь материала, ослабляя химические связи межу микрокристаллами. Процесс такого типа называется межкристаллитной коррозией (рис.2.2, а). В металлическом изделии, находящемся под действием механических напряжений, коррозия может развиваться в виде трещины, рассекая металл прямо через зёрна, транскристаллитная коррозия (рис.2.2, б). Эти два вида местной коррозии являются наиболее опасными, поскольку могут приводить к полной потере прочности и разрушению детали или конструкции. Поскольку они почти не оставляют видимых следов на поверхности, их трудно обнаружить и своевременно принять необходимые меры.
При коррозии сплавов может происходить избирательное разрушение одного из компонентов. Коррозия такого типа называется селективной (рис.2.2, в).
Рис. 2.2. Основные виды микроскопических коррозионных разрушений металла: межкристаллитная (а), транскристаллитная (б), селективная (избирательная) (в)
Отдельные коррозионные среды и вызываемые ими разрушения столь характерны, что по их названию классифицируют и протекающие в них коррозионные процессы.
Выделяют газовую коррозию, протекающую под действием газов в условиях, исключающих образование на поверхности металла жидкой фазы. В отдельный тип выделяют атмосферную коррозию – разрушение металлов под действием природной атмосферы при относительно низкой температуре, приводящей к возможности образования жидкой фазы воды на поверхности металла.
Коррозия металлов при контакте с жидкими агрессивными средами делится на коррозию в электролитах (водные растворы кислот, щелочей и солей) и неэлектролитах (нефть, топливо, смазки и др.).
Коррозия металлических конструкций в грунтах и почвах называется почвенной или подземной коррозией.
В ряде случаев металл подвергается дополнительным воздействиям, которые могут существенно увеличивать скорость коррозии и изменять тип коррозионных разрушений. К таким воздействиям относятся механические нагрузки, блуждающие токи, ионизирующее излучение, жизнедеятельность микроорганизмов и т.д.
В каждом случае при коррозии металлов протекают химические реакции, имеющие свои закономерности и особенности. Выделяют два основных механизма взаимодействия металла с коррозионной средой: химическую и электрохимическую коррозию.