
- •Часть 2
- •Введение
- •1.Химическая термодинамика
- •1.1.Основные понятия и определения
- •1.1.1.Термодинамическая система
- •1.1.2.Термодинамический процесс
- •1.1.3.Термодинамические функции состояния
- •1.2.Тепловые эффекты физико-химических процессов
- •1.2.1.Внутренняя энергия
- •1.2.2.Первое начало термодинамики
- •1.2.3.Тепловой эффект химической реакции
- •1.2.4.Термохимические расчеты
- •1.2.5.Зависимость теплового эффекта реакции от температуры
- •1.3. Направление и пределы протекания химического процесса
- •1.3.1.Второе начало термодинамики
- •1.3.2.Энтропия
- •1.3.3.Направление химического процесса
- •Примеры.
- •1.3.4. Химический потенциал
- •2. Кинетика химических реакций
- •2.1. Механизм химической реакции
- •2.1.1.Частицы, участвующие в химической реакции
- •Энергия диссоциации молекул веществ, находящихся в газовой фазе при гомолитическом и гетеролитическом разрыве связей
- •2.1.2.Классификация химических реакций
- •Пример.
- •2.2. Элементарная химическая реакция
- •2.2.1.Скорость химической реакции
- •2.2.2.Зависимость скорости химической реакции от концентрации реагирующих веществ
- •Пример.
- •2.2.3. Константа скорости химической реакции
- •Пример. Определим общее число столкновений молекул h2 и Cl2 в 1 см3 смеси равных объемов газов при нормальных условиях.
- •2.3.Формальная кинетика гомогенных реакций
- •2.3.1.Кинетическое уравнение необратимой реакции первого порядка
- •2.3.2. Кинетическое уравнение необратимой реакции второго порядка
- •2.3.3.Реакции нулевого и высших порядков
- •2.3.4. Зависимость скорости реакции от температуры
- •2.3.5.Определение кинетических параметров реакции
- •2.3.6.Кинетическое уравнение обратимой реакции первого порядка
- •2.4. Цепной механизм химической реакции
- •2.5. Индуцированные реакции
- •2.5.1. Фотохимические реакции
- •2.5.2.Радиационно–химические процессы
- •2.6.Макрокинетика
- •2.6.1.Гетерогенные реакции
- •2.6.2.Горение и взрыв
- •2.7.Катализ
- •2.7.1.Гомогенный катализ
- •2.7.2.Гетерогенный катализ
- •3. Химическое равновесие
- •3.1.Термодинамическое условие химического равновесия
- •3.1.1. Изобара реакции
- •3.1.2. Изотерма реакции
- •3.2. Кинетическое условие химического равновесия. Константа равновесия
- •3.3. Расчет равновесного состава газовой смеси
- •Состав (мольные доли компонентов XI) равновесной газовой смеси реакции
- •3.4. Равновесия в растворах
- •3.4.1.Растворы
- •Пример.
- •3.4.2. Электролитическая диссоциация
- •3.4.3.Ионное произведение воды. Водородный показатель
- •3.4.4.Растворы кислот и оснований
- •3.4.5.Буферные растворы
- •3.4.6. Гидролиз солей
- •3.4.7.Обменные реакции с образованием осадка
- •3.5. Фазовые равновесия
- •3.5.1. Правило фаз Гиббса
- •3.5.2.Диаграмма состояния однокомпонентной системы
- •3.5.3. Диаграмма состояния двухкомпонентной системы
- •3.5.4. Кипение и кристаллизация растворов
- •Повышение температуры кипения раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Понижение температуры кристаллизации раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Основы общей химии
- •Часть 2 Термодинамика и кинетика химического процесса
- •190005, С-Петербург, 1-я Красноармейская ул., д.1
3.5.1. Правило фаз Гиббса
Для анализа состояния равновесия многофазной системы используют правило фаз Гиббса: число степеней свободы системы (С) равно числу компонентов этой системы (К) плюс 2 и минус число фаз (Ф): С=К+2–Ф.
Правило фаз Гиббса является законом, определяющим число термодинамических степеней свободы в зависимости от числа находящихся в состоянии равновесия фаз и числа компонентов, образующих систему. Оно определяет число независимых параметров равновесия, необходимое и достаточное для описания системы. Отметим, что число степеней свободы возрастает с увеличением числа компонентов и уменьшается с ростом числа фаз в системе.
Для определения термодинамических условий равновесного существования фаз служат диаграммы состояния веществ (фазовые диаграммы).
3.5.2.Диаграмма состояния однокомпонентной системы
Рассмотрим диаграмму состояния однокомпонентной системы на примере диаграммы состояния воды.
В зависимости от значений термодинамических параметров равновесия температуры T и давления p вода может находиться в трех агрегатных состояниях: твердом, жидком, газообразном. Диаграмма состояния (фазовая диаграмма) является графическим изображением всех возможных фазовых состояний системы в пространстве основных параметров равновесия (температура, давление, состав).
Рассмотрим условия фазовых равновесий для воды.
Трехфазное равновесие Н2О. В равновесии находятся пар, лед и жидкость. Число степеней свободы равно нулю (С = 1 + 2 – 3 = 0). Система инвариантна, т. е. нельзя изменить ни давление, ни температуру, чтобы не изменилось число фаз. На диаграмме этому состоянию соответствует точка (точка 0 на рис. 3.3) с координатами: температура Т = 273,16 К и давление р = 610,48 Па.
Изменение одного из параметров приводит к переходу системы в однофазное состояние. В двухфазное состояние система может перейти при соответствующем изменении двух параметров.
Двухфазное равновесие Н2О. В равновесии находятся две фазы (жидкость газ, твердая фаза жидкость или твердая фаза газ). Число степеней свободы равно С = 1 + 2 – 2 = 1. Система является моновариантной. Число фаз в системе не изменится, если изменять или температуру или давление в известных пределах. Причем изменение одного из этих параметров приводит к строгому функциональному изменению и другого параметра. На диаграмме двухфазному равновесию соответствуют линии, выходящие из точки равновесия трех фаз.
Линия 1 соответствует значениям давления и температуры, при которых в равновесии находятся жидкость и газ. Она является функциональной зависимостью давления насыщенных паров от температуры (pнас = f(T)) или температуры кипения от давления (Tкип =f(p)). При повышении температуры и давления эта линия заканчивается в критической точке К (Тк = = 647,4 К, рк = 221,14105 Па). При достижении критических параметров исчезает различие свойств жидкой и газообразной воды. При Т Тк повышением давления нельзя добиться конденсацию газа. Отметим, что вещество, находящееся в газообразном состоянии при Т Тк, часто называют паром, а при Т Тк – газом.
Линия 2 соответствует значениям давления и температуры, при которых в равновесии находятся твердая фаза и жидкость.
Линия 3 соответствует равновесию твердой фазы и газа.
Однофазная система. В системе вода находится только в твердом, жидком или газообразном состоянии, число фаз Ф=1. Тогда число степеней свободы С = 1 + 2 – 1 = 2. Система является бивариантной. Можно в определенных пределах произвольно изменять оба параметра (давление и температуру), при этом число фаз не изменится. На диаграмме этому состоянию вещества соответствует часть плоскости между линиями.
Рис. 3.3. Диаграмма состояния воды (без строгого соблюдения масштаба)
Между линиями 1 (равновесие жидкость газ) и 2 (равновесие твердая фаза жидкость) находится поле жидкой фазы. Между линиями 1 (равновесие жидкость газ) и 3 (равновесие твердая фаза газ) – поле газообразного состояния. Между линиями 2 (равновесие твердая фаза жидкость) и 3 (равновесие твердая фаза газ) – поле твердой фазы.
Координаты точек пересечения линии изобары р0=1,013105 Па с линиями двухфазного равновесия (линии 2 и 1) являются температурами плавления (Тпл =273,15 К) и кипения (Ткип = 373,15 К) воды в стандартных условиях.
По диаграмме состояния (фазовой диаграмме, р–Т диаграмме) можно определить:
1) условия (давление и температура), при которых вещество находится в той или иной фазе;
2) условия равновесия (давление и температура) в системе двух и более фаз.
Например, используя диаграмму состояния воды (рис. 3.3), рассмотрим переходы системы из одного состояния равновесия в другое при изменении давления и температуры.
1. Пусть в равновесии находятся три фазы (точка 0). Изменение одного из параметров приводит к переходу системы в однофазное состояние. Например, понижение температуры при постоянном давлении вызывает переход в твердое состояние (процесс П1). При одновременном соответствующем друг другу изменении температуры и давления система перейдет в состояние двухфазного равновесия (например, процесс П2 равновесие жидкостьгаз).
2. Пусть в равновесии находятся две фазы. Например, равновесию жидкостьгаз на диаграмме соответствует линии 1. В этом случае изменение одного из параметров, например увеличение температуры (процесс П3) или давления (процесс П4), приведет к переходу системы в состояние однофазного равновесия соответственно в газообразное или жидкое состояние. При одновременном изменении температуры и давления система может остаться в состоянии двухфазного равновесия, если параметры нового состояния равновесия соответствуют точке, расположенной на линии 1.
3. Пусть система состоит только из одной фазы. Такому состоянию соответствуют точки, лежащие в одном из полей. Например, вода находится в газообразном состоянии. Можно произвольно одновременно изменять оба параметра (процесс П5), и при этом система останется однофазной. Эти изменения можно производить в пределах линий двухфазного равновесия (линии 1 и 3). Если уменьшать температуру при постоянном давлении (процесс П6), то вода будет находиться в газообразном состоянии до температуры Т, соответствующей точки пересечения с линией 1. При этой температуре будет происходить конденсация воды, и при дальнейшем понижении температуры будет охлаждаться жидкая вода.