
- •Часть 2
- •Введение
- •1.Химическая термодинамика
- •1.1.Основные понятия и определения
- •1.1.1.Термодинамическая система
- •1.1.2.Термодинамический процесс
- •1.1.3.Термодинамические функции состояния
- •1.2.Тепловые эффекты физико-химических процессов
- •1.2.1.Внутренняя энергия
- •1.2.2.Первое начало термодинамики
- •1.2.3.Тепловой эффект химической реакции
- •1.2.4.Термохимические расчеты
- •1.2.5.Зависимость теплового эффекта реакции от температуры
- •1.3. Направление и пределы протекания химического процесса
- •1.3.1.Второе начало термодинамики
- •1.3.2.Энтропия
- •1.3.3.Направление химического процесса
- •Примеры.
- •1.3.4. Химический потенциал
- •2. Кинетика химических реакций
- •2.1. Механизм химической реакции
- •2.1.1.Частицы, участвующие в химической реакции
- •Энергия диссоциации молекул веществ, находящихся в газовой фазе при гомолитическом и гетеролитическом разрыве связей
- •2.1.2.Классификация химических реакций
- •Пример.
- •2.2. Элементарная химическая реакция
- •2.2.1.Скорость химической реакции
- •2.2.2.Зависимость скорости химической реакции от концентрации реагирующих веществ
- •Пример.
- •2.2.3. Константа скорости химической реакции
- •Пример. Определим общее число столкновений молекул h2 и Cl2 в 1 см3 смеси равных объемов газов при нормальных условиях.
- •2.3.Формальная кинетика гомогенных реакций
- •2.3.1.Кинетическое уравнение необратимой реакции первого порядка
- •2.3.2. Кинетическое уравнение необратимой реакции второго порядка
- •2.3.3.Реакции нулевого и высших порядков
- •2.3.4. Зависимость скорости реакции от температуры
- •2.3.5.Определение кинетических параметров реакции
- •2.3.6.Кинетическое уравнение обратимой реакции первого порядка
- •2.4. Цепной механизм химической реакции
- •2.5. Индуцированные реакции
- •2.5.1. Фотохимические реакции
- •2.5.2.Радиационно–химические процессы
- •2.6.Макрокинетика
- •2.6.1.Гетерогенные реакции
- •2.6.2.Горение и взрыв
- •2.7.Катализ
- •2.7.1.Гомогенный катализ
- •2.7.2.Гетерогенный катализ
- •3. Химическое равновесие
- •3.1.Термодинамическое условие химического равновесия
- •3.1.1. Изобара реакции
- •3.1.2. Изотерма реакции
- •3.2. Кинетическое условие химического равновесия. Константа равновесия
- •3.3. Расчет равновесного состава газовой смеси
- •Состав (мольные доли компонентов XI) равновесной газовой смеси реакции
- •3.4. Равновесия в растворах
- •3.4.1.Растворы
- •Пример.
- •3.4.2. Электролитическая диссоциация
- •3.4.3.Ионное произведение воды. Водородный показатель
- •3.4.4.Растворы кислот и оснований
- •3.4.5.Буферные растворы
- •3.4.6. Гидролиз солей
- •3.4.7.Обменные реакции с образованием осадка
- •3.5. Фазовые равновесия
- •3.5.1. Правило фаз Гиббса
- •3.5.2.Диаграмма состояния однокомпонентной системы
- •3.5.3. Диаграмма состояния двухкомпонентной системы
- •3.5.4. Кипение и кристаллизация растворов
- •Повышение температуры кипения раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Понижение температуры кристаллизации раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Основы общей химии
- •Часть 2 Термодинамика и кинетика химического процесса
- •190005, С-Петербург, 1-я Красноармейская ул., д.1
2.7.Катализ
Процесс увеличения скорости химической реакции при постоянной температуре под действием дополнительных веществ – катализаторов, не расходующихся при протекании реакции и не входящих в состав продуктов, называется катализом. Вещества, замедляющие реакции, называются ингибиторами, катализаторы биохимических реакций – ферментами.
Катализаторы, ускоряя химическую реакцию, не влияют на положение термодинамического равновесия, т. е. на константу равновесия (уменьшается только время прихода реакции в состояние равновесия, но не изменяются равновесные концентрации).
Если в системе имеется термодинамическая возможность осуществления параллельных реакций, приводящих к образованию различных продуктов, то за счет увеличения скорости одной из них при помощи катализатора можно получить преимущественный выход определенного продукта из ряда возможных.
В зависимости от того, в каких фазах находятся катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ.
2.7.1.Гомогенный катализ
Исходные реагенты и катализатор находятся в одной фазе (газовой или жидкой). В ходе протекания гомогенной реакции образуется неустойчивое промежуточное соединение катализатора с реагирующими веществами, которое затем распадается с регенерацией катализатора. Роль катализатора сводится к изменению пути химического процесса, заключающегося в замене одной реакции с большей энергией активации двумя другими с меньшей (рис.2.14). Это приводит к тому, что при той же температуре процесс протекает с большей скоростью.
Пример. Реакция окисления диоксида серы кислородом протекает по уравнению
2SO2 + O2 2SO3.
Добавление в систему окиси азота приводит к существенному возрастанию скорости образования триоксида серы за счет протекания процесса через две промежуточные стадии:
O2
+ 2NO
2NO2, 2SO2
+ 2NO2
2SO3
+ 2NO.
Рис. 2.14. Энергетическая диаграмма гомогенного катализа
2.7.2.Гетерогенный катализ
Реагирующие вещества и катализатор находятся в разных фазах. Реакция протекает на поверхности раздела фаз. Как правило, катализатор является твердым веществом. Его роль заключается в «концентрировании» реагентов или (и) «активации» реагирующих молекул. Концентрирование реагентов – увеличение вероятности встречи молекул благодаря тому, что за счет процессов адсорбции молекулы реагентов фиксируются на поверхности катализатора. В адсорбированных молекулах, в результате взаимодействия с кристаллической решеткой катализатора, могут разрываться или ослабляться отдельные химические связи – «активация» молекул, что облегчает их химическое взаимодействие.
Поскольку в гетерогенном катализе процесс развивается на поверхности катализатора, то ее площадь играет существенную роль. Поэтому гетерогенные катализаторы должны иметь большую удельную поверхность. Например, с этой целью и для экономии дорогостоящих веществ благородные металлы (Pt, Pd, Rh и т. д.), обладающие высокой каталитической активностью, наносят на поверхность адсорбентов.
Пример. Каталитическое окисление водорода кислородом на платиновом катализаторе: 2H2 + O2 + Pt 2H2O + Pt. Молекулярный водород адсорбируется на поверхности платины, при этом происходит его диссоциация на атомы (H22H). Оба процесса способствуют протеканию реакции окисления.