
- •Часть 2
- •Введение
- •1.Химическая термодинамика
- •1.1.Основные понятия и определения
- •1.1.1.Термодинамическая система
- •1.1.2.Термодинамический процесс
- •1.1.3.Термодинамические функции состояния
- •1.2.Тепловые эффекты физико-химических процессов
- •1.2.1.Внутренняя энергия
- •1.2.2.Первое начало термодинамики
- •1.2.3.Тепловой эффект химической реакции
- •1.2.4.Термохимические расчеты
- •1.2.5.Зависимость теплового эффекта реакции от температуры
- •1.3. Направление и пределы протекания химического процесса
- •1.3.1.Второе начало термодинамики
- •1.3.2.Энтропия
- •1.3.3.Направление химического процесса
- •Примеры.
- •1.3.4. Химический потенциал
- •2. Кинетика химических реакций
- •2.1. Механизм химической реакции
- •2.1.1.Частицы, участвующие в химической реакции
- •Энергия диссоциации молекул веществ, находящихся в газовой фазе при гомолитическом и гетеролитическом разрыве связей
- •2.1.2.Классификация химических реакций
- •Пример.
- •2.2. Элементарная химическая реакция
- •2.2.1.Скорость химической реакции
- •2.2.2.Зависимость скорости химической реакции от концентрации реагирующих веществ
- •Пример.
- •2.2.3. Константа скорости химической реакции
- •Пример. Определим общее число столкновений молекул h2 и Cl2 в 1 см3 смеси равных объемов газов при нормальных условиях.
- •2.3.Формальная кинетика гомогенных реакций
- •2.3.1.Кинетическое уравнение необратимой реакции первого порядка
- •2.3.2. Кинетическое уравнение необратимой реакции второго порядка
- •2.3.3.Реакции нулевого и высших порядков
- •2.3.4. Зависимость скорости реакции от температуры
- •2.3.5.Определение кинетических параметров реакции
- •2.3.6.Кинетическое уравнение обратимой реакции первого порядка
- •2.4. Цепной механизм химической реакции
- •2.5. Индуцированные реакции
- •2.5.1. Фотохимические реакции
- •2.5.2.Радиационно–химические процессы
- •2.6.Макрокинетика
- •2.6.1.Гетерогенные реакции
- •2.6.2.Горение и взрыв
- •2.7.Катализ
- •2.7.1.Гомогенный катализ
- •2.7.2.Гетерогенный катализ
- •3. Химическое равновесие
- •3.1.Термодинамическое условие химического равновесия
- •3.1.1. Изобара реакции
- •3.1.2. Изотерма реакции
- •3.2. Кинетическое условие химического равновесия. Константа равновесия
- •3.3. Расчет равновесного состава газовой смеси
- •Состав (мольные доли компонентов XI) равновесной газовой смеси реакции
- •3.4. Равновесия в растворах
- •3.4.1.Растворы
- •Пример.
- •3.4.2. Электролитическая диссоциация
- •3.4.3.Ионное произведение воды. Водородный показатель
- •3.4.4.Растворы кислот и оснований
- •3.4.5.Буферные растворы
- •3.4.6. Гидролиз солей
- •3.4.7.Обменные реакции с образованием осадка
- •3.5. Фазовые равновесия
- •3.5.1. Правило фаз Гиббса
- •3.5.2.Диаграмма состояния однокомпонентной системы
- •3.5.3. Диаграмма состояния двухкомпонентной системы
- •3.5.4. Кипение и кристаллизация растворов
- •Повышение температуры кипения раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Понижение температуры кристаллизации раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Основы общей химии
- •Часть 2 Термодинамика и кинетика химического процесса
- •190005, С-Петербург, 1-я Красноармейская ул., д.1
2.5.2.Радиационно–химические процессы
Химические процессы, протекающие в веществе и материалах под действием ионизирующего излучения, называются радиационно-химическими.
Поток частиц или квантов электромагнитного излучения высокой энергии (Е ~50 эВ), вызывающий в веществах образование ионов, называется ионизирующим излучением.
Ионизирующее
излучение подразделяется на корпускулярное:
поток электронов (),
протонов (
),
ядер гелия (
)
и т.п., и электромагнитное:-излучение
и рентгеновское излучение.
Ионизирующее излучение возникает в результате распада ядер радиоактивных изотопов (радионуклидов): -частицы – дважды ионизованные атомы гелия; -частицы – электроны; -излучение – кванты электромагнитного излучения. Оно также может генерироваться ускорителями заряженных частиц, например электронов, протонов, или рентгеновскими установками.
Для количественных оценок радиационно-химических процессов необходимо знать величину поглощенной в веществе энергии ионизирующего излучения. Энергия ионизирующего излучения, поглощенная веществом, в пересчете на единицу его массы называется поглощенной дозой (D). В системе СИ она измеряется в Греях [1Гр = 1 Дж/кг]. Доза, получаемая за единицу времени, называется мощностью поглощенной дозы (РD), измеряется в Гр/с. Зная величину мощности дозы и время облучения, можно рассчитать поглощенную дозу.
Под действием ионизирующего излучения в веществе образуются высокоактивные частицы: ионы, радикалы, возбужденные молекулы, которые вступают в различные химические реакции между собой и со средой. Образование высокоактивных частиц в результате взаимодействия частиц потока ионизирующего излучения с атомами и молекулами вещества является первичным актом радиационно-химического процесса. Необходимо отметить, что вследствие большой энергии проходящая через вещество частица излучения может произвести ионизацию значительного числа атомов.
Рассмотрим основные механизмы взаимодействия частицы излучения с одним атомом.
Основными механизмами первичного акта взаимодействия в случае поглощения кванта электромагнитного излучения являются фотоэффект, комптоновское рассеяние и образование электрон-позитронных пар. Вероятность протекания первичного акта по тому или иному механизму будет зависеть от энергии излучения (Eh) и заряда ядра (Z) атомов.
Фотоэффект – процесс, в результате которого энергия кванта излучения полностью передается электрону, который выбивается из атома. Фотоэффект играет существенную роль для квантов с малой энергией (Eh< 0,1 МэВ) при взаимодействии с атомами имеющими Z > 20.
Комптоновское рассеяние (Compton) – процесс, в котором фотон (квант излучения) в результате упругого столкновения с электроном атома теряет часть своей энергии и изменяет направление движения, а из атома выбивается электрон отдачи. Взаимодействие по механизму эффекта Комптона преобладает в широкой области энергий фотонов (~0,1 МэВ < < Eh< ~10 МэВ) и поэтому является основным механизмом первичного акта взаимодействия электромагнитного ионизирующего излучения с веществом.
Образование электрон-позитронных пар – процесс превращения -кванта в кулоновском поле ядра или электрона в пару электрон-позитрон. Заметную роль этот процесс играет при больших энергиях -кванта (Eh> 10 МэВ).
Основным механизмом первичного акта взаимодействия заряженных частиц является электромагнитное взаимодействие с электронами вещества (ионизация и возбуждение атомов). По этому механизму частицы теряют до ~90% своей энергии. Кроме того они теряют энергию при изменении своей скорости в кулоновском поле ядра в виде тормозного рентгеновского излучения. Отметим, что рассмотренные механизмы имеют место не только для первичных заряженных частиц, но и для вторичных, возникающих при ионизации.
В зависимости от вида (электромагнитное или корпускулярное) и энергии, а также химического состава вещества, с которым оно взаимодействует, частицы ионизирующего излучения будут проникать на различную глубину. Как правило, электромагнитное излучение проникает в вещество на большую глубину, чем заряженные частицы. Кроме того, продукты первичных актов взаимодействия будут сконцентрированы вдоль пути прохождения частицы через вещество. Эти обстоятельства приводят к тому, что развитие дальнейших процессов протекает в неравновесных условиях.
Независимо от типа ионизирующего излучения, в результате первичных актов его взаимодействия с веществом образуются промежуточные частицы: сольватированные электроны (электроны, образовавшие ассоциаты с молекулами жидкости), ионы и ион-радикалы, свободные радикалы и атомы, возбужденные молекулы. Как правило, при обычных условиях эти частицы обладают высокой реакционной способностью и поэтому являются короткоживущими. Они быстро (за время порядка 10-14 – 10-7 с) взаимодействуют между собой и с молекулами среды с образованием стабильных продуктов.
Суммарный процесс, включающий как первичные акты взаимодействия, так и вторичные химические реакции, называют радиолизом. Энергетической характеристикой радиолиза является радиационно–химический выход G(X) – величина, показывающая число частиц (молекул, ионов, радикалов и т.д.), образующихся или расходующихся в веществе при поглощении 100 эВ энергии ионизирующего излучения.
Пример. Под действием ионизирующего излучения в воде протекают следующие основные реакции (радиолиз воды)
1. Образование возбужденных молекул (H2O*), ионы и электроны (1):
1. 2H2O H2O* + H2O+ + е-.
2. Образование промежуточных нестабильных частиц за счет: диссоциации возбужденных молекул воды (2), рекомбинации ионов с образованием возбужденных молекул и их последующей диссоциацией (3), гидратации электронов (4), ион-молекулярных реакций (5):
2. H2O* H + OH.
3. H2O+ + е- H2O* H + OH.
4. H2O + е- H + OH-.
5. H2O+ + H2O H3O+ + OH.
3. Образование стабильных продуктов радиолиза воды: газообразного водорода (6) и перекиси водорода (7):
6. H + H H2.
7. OH + OH H2O2.
Если система замкнута, газообразный водород принимает участие в обратных реакциях (8, 9). После определенной дозы облучения в системе устанавливается равновесие, концентрация стабильных продуктов в воде не увеличивается:
8. H2 + OH H2O + H.
9. H2O2 + H H2O + OH.
Радиационно-химический выход продуктов радиолиза воды (pH = 7) при облучении -радиацией: G(-H2O)=3,64; G(H2)=0,42; G(H2O2)=0,71; G(H*)= 2,80.
В случае если система открытая и газообразные продукты реакции уходят из раствора, то за счет реакций
H2O2 + OH H2O + HO2, HO2 + HO2 H2O2 + O2
происходит образование эквивалентной смеси газообразного водорода и кислорода ("гремучий газ") и суммарное уравнение радиолиза имеет вид
2H2O 2 H2 + O2.
Для описания процесса радиолиза в твердом теле пользуются зонной моделью. Ионизирующее излучение приводит к образованию электронов (е) и дырок (р). Электроны и дырки, мигрируя по кристаллической решетке, во-первых, могут рекомбинировать. Образующиеся при этом возбужденные частицы могут излучать избыточную энергию в виде кванта света (люминесценция) или передавать решетке в виде тепловых колебаний. Во-вторых, электроны и дырки могут взаимодействовать с решеткой с образованием дефектов различной структуры. Например, образовывать дефекты, поглощающие видимый свет (центры окраски), в результате чего твердое тело окрашивается. Так, в щелочно-галоидных кристаллах анионная вакансия (Va), захватившая электрон, образует дефект, который называется F-центр (1); межузельный (HI) и решеточный ионы галогена (HG), захватившие дырку, образуют Vк-центр (2):
1. Va+ е– F.
2. HI + HG + p Vк.