
- •Часть 2
- •Введение
- •1.Химическая термодинамика
- •1.1.Основные понятия и определения
- •1.1.1.Термодинамическая система
- •1.1.2.Термодинамический процесс
- •1.1.3.Термодинамические функции состояния
- •1.2.Тепловые эффекты физико-химических процессов
- •1.2.1.Внутренняя энергия
- •1.2.2.Первое начало термодинамики
- •1.2.3.Тепловой эффект химической реакции
- •1.2.4.Термохимические расчеты
- •1.2.5.Зависимость теплового эффекта реакции от температуры
- •1.3. Направление и пределы протекания химического процесса
- •1.3.1.Второе начало термодинамики
- •1.3.2.Энтропия
- •1.3.3.Направление химического процесса
- •Примеры.
- •1.3.4. Химический потенциал
- •2. Кинетика химических реакций
- •2.1. Механизм химической реакции
- •2.1.1.Частицы, участвующие в химической реакции
- •Энергия диссоциации молекул веществ, находящихся в газовой фазе при гомолитическом и гетеролитическом разрыве связей
- •2.1.2.Классификация химических реакций
- •Пример.
- •2.2. Элементарная химическая реакция
- •2.2.1.Скорость химической реакции
- •2.2.2.Зависимость скорости химической реакции от концентрации реагирующих веществ
- •Пример.
- •2.2.3. Константа скорости химической реакции
- •Пример. Определим общее число столкновений молекул h2 и Cl2 в 1 см3 смеси равных объемов газов при нормальных условиях.
- •2.3.Формальная кинетика гомогенных реакций
- •2.3.1.Кинетическое уравнение необратимой реакции первого порядка
- •2.3.2. Кинетическое уравнение необратимой реакции второго порядка
- •2.3.3.Реакции нулевого и высших порядков
- •2.3.4. Зависимость скорости реакции от температуры
- •2.3.5.Определение кинетических параметров реакции
- •2.3.6.Кинетическое уравнение обратимой реакции первого порядка
- •2.4. Цепной механизм химической реакции
- •2.5. Индуцированные реакции
- •2.5.1. Фотохимические реакции
- •2.5.2.Радиационно–химические процессы
- •2.6.Макрокинетика
- •2.6.1.Гетерогенные реакции
- •2.6.2.Горение и взрыв
- •2.7.Катализ
- •2.7.1.Гомогенный катализ
- •2.7.2.Гетерогенный катализ
- •3. Химическое равновесие
- •3.1.Термодинамическое условие химического равновесия
- •3.1.1. Изобара реакции
- •3.1.2. Изотерма реакции
- •3.2. Кинетическое условие химического равновесия. Константа равновесия
- •3.3. Расчет равновесного состава газовой смеси
- •Состав (мольные доли компонентов XI) равновесной газовой смеси реакции
- •3.4. Равновесия в растворах
- •3.4.1.Растворы
- •Пример.
- •3.4.2. Электролитическая диссоциация
- •3.4.3.Ионное произведение воды. Водородный показатель
- •3.4.4.Растворы кислот и оснований
- •3.4.5.Буферные растворы
- •3.4.6. Гидролиз солей
- •3.4.7.Обменные реакции с образованием осадка
- •3.5. Фазовые равновесия
- •3.5.1. Правило фаз Гиббса
- •3.5.2.Диаграмма состояния однокомпонентной системы
- •3.5.3. Диаграмма состояния двухкомпонентной системы
- •3.5.4. Кипение и кристаллизация растворов
- •Повышение температуры кипения раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Понижение температуры кристаллизации раствора по сравнению с чистым растворителем прямо пропорционально концентрации растворенного вещества:
- •Основы общей химии
- •Часть 2 Термодинамика и кинетика химического процесса
- •190005, С-Петербург, 1-я Красноармейская ул., д.1
Пример.
гомогенная, гомофазная реакция: H2(газ)+Br2(газ) 2 HBr(газ),
гомогенная, гетерофазная реакция: NH3(газ) + HCl(газ) NH4Cl(тв),
гетерогенная, гомофазная реакция: C(тв) + O2(газ) CO2(газ),
гетерогенная, гетерофазная реакция: Cu(тв) + O2(газ) 2CuO(тв).
3. Если в системе происходят химические реакции, приводящие к образованию только продуктов реакции, независимо от внешних условий, то такие реакции называются необратимыми (односторонние). Стрелка, направленная только вправо в уравнении реакции, говорит о том, что эта реакция необратима. Если в системе происходят химические реакции, приводящие к образованию как продуктов из исходных веществ (прямая реакция), так и исходных веществ из продуктов (обратная реакция), то такие реакции называются обратимыми (двухсторонними). В ходе обратимых реакций исходные вещества полностью не расходуются. Система приходит в состояние равновесия. В состоянии равновесия обязательно будут как продукты реакции, так и исходные вещества, концентрация которых будет зависеть от внешних условий. Две стрелки, направленные вправо и влево в уравнении реакции, говорят о том, что она обратима.
4. Химические реакции могут быть разделены по числу исходных веществ и продуктов. Деление на группы по этому признаку может относиться как к простым, так и к сложным реакциям.
а) Исходным является одно вещество. Как правило, в этом случае реакции простые и в элементарном акте превращение претерпевает одна частица с образованием одной, двух и более частиц (мономолекулярная реакция): A A1 + A2 + …+An.
К реакциям этого типа относятся:
реакции распада, в которых из одного исходного вещества получаются два и более продуктов реакции. Распад с разрывом только одной химической связи называется диссоциацией, например H2O2 2 OH. Распад на три и более веществ называется фрагментацией;
реакции изомеризации, в ходе которых меняется только строение молекулы исходного вещества, например (CH3)2CHCH2+ (CH3)3C+.
б) Исходными являются два вещества. В случае простой реакции в элементарном акте принимают участие две частицы (бимолекулярные реакции).
К реакциям этого типа относятся:
реакции присоединения (ассоциации): A + B AB. Соединение двух одинаковых молекул называется димеризацией, например 2NO2 N2O4. Последовательное соединение одинаковых молекул в одну макромолекулу называется полимеризацией, например nCH2=CH2(-CH2-CH2-)n. Если в элементарной реакции участвуют два свободных атома, радикала или иона с образованием молекулы, то реакция называется рекомбинацией, например: H + H H2, H + Cl HCl, H+ + OH- H2O;
реакции типа A + BC AB + C называются реакциями отрыва, если В – атом или одноатомный ион, например, CH4 + Cl CH3 + HCl, и реакциями замещения, если А – молекула, радикал, ион, а В – многоатомный радикал или ион, например CH3Cl + I- CH3I + Cl-.
5. В зависимости от того, как происходит перераспределение электронов в химических реакциях, их можно разделить на:
окислительно–восстановительные, в ходе которых одно вещество (восстановитель) отдает, а другое (окислитель) принимает электроны, например Fe+2 + OH Fe+3 + OH-;
гомолитические, в ходе которых происходит или разрыв общей электронной пары с образованием частиц, содержащих неспаренные электроны (свободные радикалы), или образование связи (пары электронов) в результате соединения двух частиц с неспаренными электронами, например гомолитический распад: Cl2 2Cl и рекомбинация H + Cl HCl;
гетеролитические, в ходе которых происходит как разрыв связи, так и ее образование без разрыва общей электронной пары. При разрыве связи общая пара переходит к одному из фрагментов. При этом образуются положительный и отрицательный ионы. Образование связи происходит при их рекомбинации. Например:
HCl H+ + Cl-; NaOH Na+ + OH-; H+ + OH- H2O.
6. В зависимости от способов подвода энергии, вызывающей в системе протекание химических реакций, они делятся на:
термические, в которых реагенты активируются только за счет теплового движения молекул;
фото- и радиационно-химические, в которых реагенты активируются при воздействии света или ионизирующего излучения;
электрохимические, протекающие под действием электрического тока;
механохимические, протекающие в твердом теле при механическом воздействии на него.