
- •Введение
- •1. История развития теории надежности
- •2. Надежность как прикладная научная дисциплина
- •3. Надежность и качество
- •4. Физико-химические процессы, влияющие на надежность
- •Влияние некоторых внешних воздействий на полупроводниковые приборы
- •5. Классификация основных состояний объекта
- •6. Номенклатура и классификация показателей надежности
- •Номенклатура показателей надежности
- •7. Количественные характеристики надежности технических устройств
- •7.1. Показатели безотказности невосстанавливаемых объектов
- •7.2. Показатели безотказности восстанавливаемых объектов
- •7.3. Показатели долговечности
- •7.4. Показатели ремонтопригодности
- •7.5. Показатели сохраняемости
- •7.6. Комплексные показатели надежности
- •7.7. Аналитические зависимости между показателями надежности
- •8. Нормирование показателей надежности
- •9. Моделирование и анализ надежности технических устройств и систем
- •9.1. Методология моделирования надежности
- •9.2. Методы анализа структурной надежности сложных технических систем (см. Также пз 2)
- •9.2.1. Основные типы структурных схем надежности Системы с последовательным соединением элементов
- •Системы с параллельным соединением элементов
- •9.2.2. Структурно-логический метод анализа системы
- •9.3. Вероятностные методы анализа надежности
- •9.3.1. Вероятностная модель внезапного отказа
- •9.3.2. Вероятностная модель постепенного отказа
- •9.4. Топологические методы
- •9.5. Принципы расчета надежности при проектировании
- •Обоснование норм надежности
- •Расчет надежности
- •Значения поправки для разных условий эксплуатации
- •Интенсивности отказов элементов радиоэлектронной аппаратуры
- •10. Методы повышения и обеспечения надежности
- •10.1. Методы повышения структурной надежности
- •Классификация способов резервирования элементов систем
- •10.2. Надежность систем при разных способах структурного резервирования
- •10.3. Обеспечение надежности при эксплуатации
- •Классификация ремонта
- •11. Испытания на надежность (определение надежности по экспериментальным данным)
- •11.1. Классификация испытаний и планов испытаний на надежность
- •Классификация испытаний технического объекта
- •Цели испытаний технических устройств
- •Планы испытаний на надежность
- •Рекомендуемые планы испытаний на надежность
- •11.2. Определительные испытания на надежность
- •Планирование испытаний
- •Определение объема испытаний для плана испытаний [nun]
- •Определение объема испытаний для плана [nUr]
- •Определение объема испытаний для плана [nuт]
- •Определение объема испытаний для планов [nMr], [nmt], [nRr], [nrt]
- •11.3. Оценка показателей надежности
- •11.3.1. Экспериментальные методы
- •Точечная оценка непараметрическим методом
- •Формулы для вычисления значений точечных оценок показателей надежности
- •Точечная оценка параметрическим методом
- •Формулы для вычисления значений точечных оценок показателей надежности при известном законе распределения
- •Точечные оценки параметра λ экспоненциального распределения
- •Интервальные оценки показателей надежности
- •Вычисление интервальных оценок показателей надежности непараметрическим методом
- •Экспоненциальное распределение
- •Распределение Вейбулла
- •Интервальные оценки показателей надежности
- •Оценка остаточного ресурса по результатам испытаний
- •Оценка показателей безотказности при испытаниях с измерением определяющих параметров
- •11.3.2. Расчетно-экспериментальные методы
- •Коэффициенты отношения параметров распределений
- •Типовые ситуации
- •Интервальная оценка вероятности безотказной работы систем с последовательной ссн при биномиальных испытаниях
- •Оценка показателей безотказности систем с последовательной ссн при планах испытаний с измерением наработки до отказа
- •Оценки параметра λ
- •Оценка показателей долговечности систем с последовательной ссн
- •Оценки среднего ресурса системы по ресурсу элементов
- •Оценка гамма – процентного ресурса системы
- •11.3.3. Контрольные испытания на надежность
- •Применяемость контрольных испытаний на надежность по гост 27.410-87
- •Метод одноступенчатого контроля
- •Контроль показателя безотказности Один контрольный уровень
- •Два контрольных уровня
- •Одноступенчатые планы контроля вероятности безотказной работы
- •Контроль наработки
- •Одноступенчатые планы контроля наработки
- •Метод многоступенчатого контроля
- •Метод последовательного контроля
- •Контроль безотказности
- •Контроль наработки
- •11.3.4. Контроль надежности сложных систем по данным о надежности их элементов
- •Объем испытаний для контроля вероятности безотказной работы при биномиальном плане
- •Объем испытаний для контроля наработки при экспоненциальном законе распределения
- •11.3.5. Методы ускоренных испытаний
- •12. Исследование риска
- •12.1. Методы анализа риска Стандарты, устанавливающие и использующие понятия риска и его оценок, а также относящиеся непосредственно к менеджменту риска:
- •Перечень наиболее распространенных методов, используемых при анализе риска (по гост р 51901.1-2002)
- •Перечень дополнительных методов, используемых при анализе риска
- •Исследование опасности и связанных с ней проблем (hazop)
- •Анализ видов и последствий отказов (fmea)
- •Анализ диаграммы всех возможных последствий несрабатывания или аварии системы (анализ «дерева неисправностей») (fта)
- •Анализ диаграммы возможных последствий события (анализ «дерева событий») (ета)
- •Предварительный анализ опасности (рна)
- •Оценка влияния на надежность человеческого фактора (hra)
- •12.2. Оценивание риска
- •Матрица риска
- •Матрица критичности отказов
- •12.3. Количественный анализ технического риска
- •Рекомендации по выбору методов анализа риска
- •Рассмотрим простой экспрессный метод количественного анализа риска
Введение
Надежность - это комплексный фактор, объективно присущий всем материальным системам и дающий возможность устанавливать оптимальную меру соответствия рабочих процессов и выходных характеристик системы ее функциональному назначению.
Любые технические устройства всегда изготавливались в расчете на некоторый достаточный для практических целей период экономически эффективного использования. Однако долгое время надежность не измерялась количественно, что значительно затрудняло ее объективную оценку. Для оценки надежности использовались такие понятия, как высокая надежность, низкая надежность и другие качественные определения. Установление количественных показателей надежности и способов их измерения и расчета положило начало научным методам в исследовании надежности.
В нашей стране проблема надежности машин в концептуальном аспекте впервые была выдвинута и обсуждена на сессии Академии наук СССР в 1934 году. На первых этапах развития теории надежности основное внимание сосредотачивалось на сборе и обработке статистических данных об отказах изделий. В оценке надежности преобладал характер констатации количественных характеристик потока отказов на основании статистических данных.
Развитие теории надежности сопровождалось совершенствованием вероятностных методов исследования, таких как определение законов распределений наработок до отказа, разработка методов расчета и испытаний изделий с учетом случайного характера отказов и т.п.
Вместе с тем, возникали новые направления исследований, связанные с:
поиском принципиально новых способов повышения надежности;
прогнозированием отказов и прогнозированием количественных показателей надежности;
анализом физико-химических процессов, оказывающих влияние на надежность, установлением корреляционных связей между характеристиками этих процессов и показателями надежности;
совершенствованием методов расчета показателей надежности изделий, обладающих все более сложной структурой, с учетом все большего числа действующих факторов.
Испытания на надежность совершенствовались главным образом в направлении проведения ускоренных и неразрушающих испытаний. Наряду с совершенствованием натурных испытаний широкое распространение получили математическое моделирование и сочетание натурных испытаний с моделированием. В результате к середине 20-го века сформировались основы общей теории надежности и ее частных направлений по отдельным видам техники.
Увеличивающаяся сложность технических устройств, возрастающая ответственность функций, выполняемых техническими системами, повышение требований к качеству изделий и условиям их работы, возросшая роль автоматизации управления техническими объектами - основные факторы, определившие главное направление в развитии науки о надежности.
Круг вопросов, входящих в компетенцию теории надежности, по мнению К.В. Щурина (статья «Проблема надежности в философском аспекте» credonew.ru/content/view/312/27/), наиболее полно сформулировал акад. А.И. Берг: «Теория надежности устанавливает закономерности возникновения отказов и восстановления работоспособности системы и ее элементов, рассматривает влияние внешних и внутренних воздействий на процессы в системах, создает основы расчета надежности и предсказания отказов, изыскивает способы повышения надежности (при конструировании и изготовлении систем и их элементов, а также способы сохранения надежности при эксплуатации)».
Всякая система обладает определенной детерминированной или вероятностной структурой. В процессе поиска оптимальных путей решения проблем надежности в технике одним из основных является вопрос о взаимосвязи структуры и функции. По особенностям структуры любой конкретной системы практически всегда можно сделать вывод о выполняемой ею функции. В основе надежного функционирования технических систем лежит принцип структурной и функциональной избыточности, отражающий присущее системе единство структуры и функции.
Достижимая избыточность определяется как оптимум, определяемый приемлемым уровнем согласования различных требований к системе: технических, экономических, социальных и т.д. С философской точки зрения оптимизация количественных характеристик избыточности и надежности отражает, по мнению К.В. Щурина, действие законов диалектики: переход количественных изменений в качественные, единство и борьба противоположностей.
Процессы изменчивости в эволюции технических систем обуславливается, прежде всего, научно-техническим прогрессом в смежных отраслях. Показатели надежности той или иной системы в преобладающей степени формируются путем многокритериальной оптимизации, обеспечивающей рациональное сочетание факторов наследственности и изменчивости с учетом эксплуатационных, экономических, социальных, антропологических и других факторов и внешних воздействий.
Научно-техническая революция привела к появлению во второй половине ХХ века нового класса систем - эргатических, структурной частью которых является человек-оператор.
Обеспечение надежности системы «человек-машина», является главной задачей инженерной психологии; при этом уже не подвергается сомнению, что определяющее значение имеет надежность оператора. Ключевой эргатический фактор состоит в том, что, управляя современными техническими системами, оператор постоянно взаимодействует не с управляемыми объектами, а с их информационными моделями.
Надежность системы «человек-машина» важна, в первую очередь, с точки зрения обеспечения безопасности. Эту проблему мы рассмотрим в разделе «безопасность».