
- •Инженерный анализ, моделирование и проектирование электронных устройств
- •Введение
- •1. Технология решения задач инженерного анализа с использованием пакета mathcad
- •1.1. Введение
- •1.2. Рабочее окно Mathcad
- •1.3 Основные встроенные функции и ключевые слова Mathcad
- •1.4. Основные вопросы практического занятия
- •1.5. Перечень рекомендуемой литературы
- •1.6. Типовое задание по Mathcad
- •2. Технология изготовления конструкторской документации с использованием сапр «Компас»
- •2.1. Введение
- •2.2. Основные определения
- •2.3. Основные вопросы практического занятия
- •2.4. Перечень рекомендуемой литературы
- •2.5. Типовое задание
- •3. Технология моделирования электронных устройств с использованием программы multisim
- •Введение
- •Интерфейс программы Multisim
- •Рабочая область
- •3.2.2. Меню
- •3.2.3. Главная панель инструментов
- •3.2.4. Панели электрорадиоэлементов
- •3.2.5. Панель приборов
- •3.3. Использование Справки (Help)
- •3.4. Создание новой схемы
- •3.4.1. Установка элементов
- •3.4.2. Соединение элементов
- •3.4.3. Установка измерительных приборов
- •3.4.4. Включение схемы
- •3.5. Моделирование работы схемы
- •3.7. Измерительные инструменты
- •3.7.1. Мультиметр
- •3.7.2. Функциональный генератор
- •3.7.3. Двухканальный осциллограф
- •3.7.4. Графопостроитель
- •3.7.5. Генератор слов
- •3.7.6. Логический анализатор
- •3.7.7. Логический преобразователь
- •3.8. Моделирование электронных устройств при помощи программы Multisim
- •3.8.1. Моделирование интегрирующей rc – цепи
- •Моделирование дифференцирующей rc – цепи
- •3.8.3. Требования к оформлению отчетов
- •3.8.4. Примерный вариант типового отчета (фрагмент анализа интегрирующей rc – цепи)
- •3.9. Лабораторная работа №1. Исследование полупроводниковых диодов
- •3.9.1. Электронно-дырочный переход (p-n переход)
- •3.9.2. Ступенчатые и плавные р-n переходы
- •3.9.3. Симметричные, несимметричные и односторонние р-n переходы
- •3.9.4. Вольтамперная характеристика р-n перехода
- •3.9.5. Пробои р-n перехода
- •3.9.6. Емкости р-n перехода
- •3.9.7. Светодиод
- •3.9.8. Исследование характеристик диодов
- •3.9.9. Задание на лабораторную работу
- •Задание на лабораторную работу №1
- •3.9.10. Контрольные вопросы
- •3.10. Лабораторная работа №2. Исследование выпрямительных схем
- •3.10.1. Назначение и состав схем выпрямления
- •3.10.2. Требования к выпрямителям
- •3.10.3. Коэффициент пульсаций
- •3.10.4. Однополупериодная схема выпрямления
- •Достоинства и недостатки
- •3.10.5. Двухполупериодная схема выпрямления
- •3.10.6. Мостовая схема выпрямления
- •3.10.7. Умножители напряжения
- •3.10.8. Задание на лабораторную работу
- •Задание на лабораторную работу №2
- •3.10.9. Контрольные вопросы
- •3.11. Лабораторная работа №3. Исследование стабилизаторов напряжения
- •3.11.1. Однокаскадный стабилизатор напряжения
- •Пример работы схемы однокаскадного стабилизатора напряжения приведен на рис. 44.
- •Коэффициент стабилизации
- •3.11.2. Однокаскадный стабилизатор напряжения c термокомпенсацией
- •3.11.3. Двухкаскадный стабилизатор напряжения
- •3.11.4. Мостовые стабилизаторы напряжения
- •3.11.5. Задание на лабораторную работу
- •Задание на лабораторную работу №3
- •3.11.6. Контрольные вопросы
- •3.12. Лабораторная работа №4. Исследование сглаживающих фильтров
- •3.12.1. Простейшие сглаживающие фильтры
- •3.12.2. Сложные сглаживающие фильтры
- •3.12.3. Г-образный индуктивно-емкостный (lc) фильтр
- •Недостатки
- •3.12.4. Г-образный реостатно-емкостный (rc) фильтр
- •Недостатки
- •3.12.7. Задание на лабораторную работу
- •Задание на лабораторную работу №4
- •3.12.8. Контрольные вопросы
- •3.13.3. Исследование вах биполярных транзисторов
- •3.13.4. Коэффициента передачи по току
- •3.13.5. Задание на лабораторную работу
- •Задание на лабораторную работу №5
- •3.14.2. Усилительный каскад по схеме с об
- •3.14.3. Исследование усилительного каскада по схеме с оэ
- •3.14.4. Параметры усилительных каскадов
- •3.14.5. Задание на лабораторную работу
- •Задание на лабораторную работу
- •3.14.6. Контрольные вопросы
- •3.15. Лабораторная работа № 7. Исследование транзисторных ключей
- •3.15.1. Закрытое состояние ключа
- •3.15.2. Открытое состояние ключа
- •3.15.3. Насыщение ключа
- •3.15.4. Быстродействие ключей
- •3.15.5. Элементы связи
- •3.15.6. Ключевой каскад ттл
- •3.15.7. Отрицательная обратная связь
- •3.15.8. Диоды Шоттки
- •3.15.9. Недостатки ненасыщенного транзисторного ключа
- •3.15.10. Задание на лабораторную работу
- •Задание на лабораторную работу
- •3.16.5. Полевые транзисторы с р–n переходом
- •3.16.6. Транзисторы с n-каналом и р-каналом
- •3.16.7. Схемы включения
- •3.16.8. Схема для исследования вах транзистора
- •3.16.9. Мдп-транзисторы
- •3.16.15. Управление мдп-транзистором через подложку
- •3.16.16. Режимы обеднения и обогащения
- •3.16.17. Преимущества мдп-транзисторов
- •3.16.18. Разновидности мдп-транзисторов
- •3.16.19. Исследования характеристик мдп-транзисторов
- •3.16.20. Задание на лабораторную работу
- •Задание на лабораторную работу №8
- •3.16.21. Контрольные вопросы
- •3.17. Лабораторная работа №9. Генерация и анализ цифровых последовательностей
- •3.17.1. Бит. Логическое слово
- •3.17.2. Триггеры. Регистры
- •3.17.3. Устройства памяти
- •3.17.4. Уровень логического нуля и логической единицы
- •3.17.5. Системы счисления 2, 8, 16
- •3.17.6. Генератор слов
- •3.17.7. Логический анализатор
- •3.17.8. Задание на лабораторную работу
- •Задание на лабораторную работу №9
- •3.17.9. Контрольные вопросы
- •Содержание
3.10.7. Умножители напряжения
Принцип действия
Принцип действия схем с умножением напряжения основан на использовании процесса разряда нескольких конденсаторов, заряженных через выпрямитель, на одну нагрузку. Наиболее часто на практике используются схемы удвоения (рис. 41) и утроения напряжения. Результаты моделирования схемы удвоения напряжения представлены на рис. 42.
Рис. 41. Схема удвоения напряжения
Работа схемы удвоения напряжения
Схема удвоения напряжения представляет собой соединение двух однополупериодных выпрямителей.
Применение
Применяется при высоких напряжениях (до 1...2 кВ) и небольших токах нагрузки.
Пульсации напряжения
Приближенная формула для коэффициента пульсаций совпадает с выражением (3). Пульсации на каждом конденсаторе схемы удвоения в 2 раза больше пульсаций на ее выходе.
Рис. 42. Напряжение на входе и выходе схемы удвоения напряжения
3.10.8. Задание на лабораторную работу
Иcследовать однополупериодную схему выпрямления
Собрать схему (рис. 32). Выпрямительный диод использовать из л/р №1. Трансформатор - «идеальный» (без потерь) TS_POWER_VIRTUAL из набора Basic.
Наблюдать на экране осциллографа сигналы на входе и выходе выпрямителя.
Добавить в схему конденсатор С1 (рис. 34). Наблюдать на экране осциллографа сигналы на входе и выходе выпрямителя.
Определить по осциллографу амплитуду пульсаций на выходе выпрямителя. При измерениях использовать органы управления осциллографом (AC/DC, Scale, Y position) для каналов А и В.
Рассчитать экспериментальный и теоретический (3) коэффициенты пульсаций. Сравнить значения.
Вставить в отчет (документ Word) копии экранов осциллографа в момент измерения пульсаций на выходе выпрямителя и расчеты коэффициентов пульсаций.
Исследовать зависимость коэффициентов пульсаций от емкости фильтрующего конденсатора, увеличив его значения в 2, 5 и 10 раз.
Исследовать зависимость коэффициентов пульсаций от сопротивления нагрузки, увеличив его значения в 2, 5 и 10 раз.
Иcследовать двухполупериодную схему выпрямления
Собрать схемы (рис. 36 и 38)
Повторить эксперименты 1.2-1.8 для двухполупериодного выпрямления (рис. 38). При расчетах использовать выражение (4).
Иcследовать мостовую схему выпрямления
Собрать схему (рис. 39).
Добавить в схему конденсатор и повторить эксперименты 1.4-1.8 для мостового выпрямления.
Иcследовать схему удвоения напряжения.
Собрать схему (рис. 41).
Добавить в схему конденсатор и повторить эксперименты 1.4-1.8 для удвоителя напряжения.
Определить экспериментальный коэффициент умножения напряжения.
Таблица 2
Задание на лабораторную работу №2
№ варианта |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Амплитуда, В |
10 |
10 |
20 |
20 |
10 |
10 |
5 |
5 |
20 |
20 |
Частота, Гц |
50 |
50 |
50 |
50 |
100 |
100 |
100 |
100 |
200 |
200 |
Rн, кОм |
10 |
10 |
27 |
5,1 |
5,1 |
7,5 |
1,0 |
5,1 |
5,1 |
5,1 |
C, мкФ |
10 |
22 |
3,3 |
10 |
10 |
22 |
22 |
7,5 |
10 |
5,1 |
№ варианта |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Амплитуда, В |
5 |
5 |
10 |
10 |
5 |
5 |
10 |
10 |
5 |
5 |
Частота, Гц |
200 |
200 |
400 |
400 |
400 |
400 |
1000 |
1000 |
1000 |
1000 |
Rн, кОм |
15 |
12 |
15 |
6,8 |
1,5 |
1,5 |
6,8 |
1,5 |
1,5 |
1,0 |
C, мкФ |
1,0 |
1,0 |
2,2 |
2,2 |
4,7 |
2,2 |
2,2 |
4,7 |
2,2 |
2,2 |
В случае появления окна с сообщением об ошибке Simulation Error Log/Audit Trail произвести самостоятельно подбор номиналов элементов в схеме.