
- •1.Полупроводниковые диоды, принцип действия, характеристики:
- •2.Полупроводниковые диоды, прямое и обратное включение, вах:
- •3. Полупроводниковые диоды, классификация по конструктивным особенностям и области применения:
- •4. Биполярные транзисторы, принцип действия:
- •5. Биполярные транзисторы, распределение токов в кристалле:
- •6. Биполярные транзисторы, коэффициент инжекции, переноса, передачи тока:
- •7. Биполярные транзисторы, вах транзистора включенного по схеме с общей базой:
- •8. Биполярные транзисторы, вах транзистора включенного по схеме с общим эмиттером:
- •9. Особенности применения полевых и биполярных транзисторов. Схема Дарлингтона:
- •10. Полевые транзисторы. Изменение сечения канала проводимости от напряжения между затвором и истоком. Вах:
- •11. Полевые транзисторы. Изменение сечения канала проводимости от напряжения между стоком и истоком. Вах:
- •12. Полевые транзисторы. Характерные параметры определяемые по вах:
- •13. Полевые транзисторы. Режимы объединения и обогащения канала:
- •14. Полевые транзисторы с p-n переходом, принцип действия, стокозатворные характеристики:
- •15. Полевые транзисторы с p-n переходом, принцип действия, стоковые характеристики:
- •16. Полевые транзисторы с изолированным затвором и встроенным каналом, принцип действия, стокозатвроные характеристики:
- •17. Полевые транзисторы с изолированным затвором и встроенным каналом, принцип действия, стоковые характеристики:
- •18. Полевые транзисторы с изолированным затвором и индуцированным каналом, принцип действия, стокозатвроные характеристики:
- •19. Полевые транзисторы с изолированным затвором и индуцированным каналом, принцип действия, стоковые характеристики:
- •20. Полевые транзисторы. Особенности управления:
- •21. Силовые полупроводниковые приборы. Способ снижения потерь при коммутации:
- •22. Динистор. Вах. Схема включения:
- •23. Динистор. Вах. Схема выключения:
- •24. Динистор. Вах. Схема замещения:
- •25. Тиристор. Вах. Области применения:
- •26. Тиристор. Общие черты и отличия вах тиристора и динистора:
- •27. Тиристор. Эффект dU/dt: Эффект dU/dt:
26. Тиристор. Общие черты и отличия вах тиристора и динистора:
Вольт-амперная
характеристика, ВАХ динистора, имеет
вид на рисунке 3.
Устойчивое состояние (точка D на ВАХ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около 1,5 – 2,0 вольта.
Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.
С увеличением анодного напряжения Uа, ток через динистор сначала растет медленно (участок А — В на ВАХ). Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.
При некотором значении напряжения (участок В — С на ВАХ). называемым напряжением переключения Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние. В цепи устанавливается ток (участок D – E на ВАХ), определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2). Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт. На вольт – амперной характеристике, ВАХ (рис 3.), обозначены участки: - А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя; - В – С участок пробоя коллекторного перехода; - C — D участок отрицательного сопротивления; — D — E участок открытого состояния динистора (динистор включен).
Динистор имеет два устойчивых состояния: — заперт (А – В) — открыт (D — E)
В участке A – D – E явно просматривается кривая ВАХ диода.
♦ Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором. Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода. При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер. Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ) тиристор закроется.Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0) называется током удержания Iуд. Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние. Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами (Э1 –Б1), либо между электродами (Э2 – Б2).
♦ Вольтамперная
характеристика тиристора (Рис 4), похожа
на вольтамперную характеристику
динистора.
Однако отпирание тиристора обычно
происходит при существенно более
низком напряжении, чем необходимо
динистору. К раннему открыванию тиристора
приводит протекание тока через управляющий
электрод. Чем больше ток управляющего
электрода от
Iy1 до Iy4, тем при
более низком напряжении Ua тринистор
перейдёт в открытое состояние. Это
отражено на вольтамперной характеристике
тиристора.
♦ Тиристоры изготавливают на разные мощности: маломощные(ток 50 мА. – 100 мА), средней мощности (ток до 20 ампер) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт.
♦ По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры. Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.