
- •С.И. Кулиев
- •Часть 1
- •1.1. Цели и задачи дисциплины, её место в учебном процессе
- •1.2. Основные требования к знаниям и умениям
- •1.3. Межпредметные связи
- •1.4. Программа курса «Радиобиология» Введение
- •1. Физические основы радиобиологии
- •2. Основы радиоэкологии
- •3. Токсикология радионуклидов
- •4. Биологическое действие ионизирующих излучений
- •5. Гигиенические аспекты радиационной безопасности
- •6. Излучение как инструмент исследования
- •1.6. Распределение часов по семестрам и видам занятий
- •1.7. Тематический план лекций
- •1.8. Тематический план лабораторно- практических занятия, их содержание и объем в часах
- •1.9. Вопросы к лабораторно- практическим занятиям Занятие № 1 Радиоактивность. Взаимодействие различных видов ии с веществом
- •Занятие № 2 Токсикология радионуклидов Биологическое действие ии
- •Занятие № 3 Радиационные повреждения на различных уровнях организации Радиационная безопасность
- •1.10. Контрольные вопросы для подготовки к зачёту
- •1.11. Основная и дополнительная литература
- •Часть 2
- •Раздел 1 (лекции № 1–2) радиобиология как предмет. Физические основы радиобиологии
- •После изучения данного раздела Вы должны будете
- •Глава 1.1. Радиобиология как предмет
- •1.1.1. Радиобиология как предмет
- •Задачи радиобиологии:
- •1.1.2. История открытия радиации
- •1.1.3.Три этапа развития радиобиологии
- •Глава 1.2. Физико-химические основы радиобиологии
- •1.2.1. Характеристика атомного ядра
- •1.2.2. Ядерные силы, дефект массы
- •1.2.3. Типы ядерных превращений
- •1.2.4. Закон радиоактивного распада
- •1.2.5. Активность радиоактивного элемента
- •Основные физические величины, используемые в радиационной биологии
- •Глава 1.3. Природа ионизирующих излучений
- •1.3.1. Виды ии
- •Энергия квантов и длины волн различных природных излучений
- •1.3.2. Взаимодействие радиоактивных излучений с веществом
- •Раздел 2 (лекции № 3–4) основы радиоэкологии
- •Глава 2.1. Естественный и антропогенный радиационный фон
- •2.1.1. Космическое излучение, его природа, характеристики.
- •2.1.2. Естественный радиационный фон
- •Действие ионизирующего излучения на внешнюю среду
- •2.1.3. Радиоактивные элементы земных пород и пищи
- •Характеристики основных изотопов
- •2.1.4. Семейства радиоактивных элементов
- •Семья радионуклидов урана
- •2.1.5. Радиационные пояса Земли
- •Глава 2.2. Антропогенный радиационный фон
- •2.2.1. Искусственные источники ии
- •2.2.2. Деление и синтез ядер
- •2.2.3. Строительные материалы
- •Глава 2.3. Перемещения радиоактивных веществ в биосфере
- •2.3.1. Общие закономерности
- •2.3.2. Поведение радионуклидов в атмосфере
- •2.3.3. Поведение радионуклидов в почве
- •Классификация химических элементов по коэффициентам накопления
- •2.3.4. Поведение радионуклидов в воде
- •Глава 2.4. Экологические проблемы атомной промышленности
- •2.4.1. Радиоактивные отходы
- •Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности
- •Классификация твердых радиоактивных отходов по уровню радиоактивного загрязнения
- •2.4.2. Возможности технических средств радиационной разведки (рдр)
- •Раздел 3 (лекции № 5–7) биологическое действие ионизирующего излучения на живые объекты
- •После изучения данного раздела Вы должны будете
- •Глава 3.1. Токсичность радионуклидов
- •3.1.1. Факторы, обуславливающие токсичность радионуклидов
- •Коэффициенты относительной биологической эффективности (обэ) для разных видов излучения
- •Типы распределения радиоактивных элементов в организме
- •3.1.2. Классификация радионуклидов по их токсичности для человека и животных
- •Глава 3.2. Накопление радионуклидов в органах и тканях
- •3.2.1. Особенности биологического действия инкорпорированных радионуклидов
- •3.2.2. Биологическое действие инкорпорированного j131
- •3.2.3. Биологические эффекты при внутреннем облучении i37Cs
- •3.2.4. Комбинированное действие инкорпорированных Cs137 и j131
- •Глава 3.3. Механизм биологического действия ии
- •3.3.1. Прямое и непрямое действие радиации
- •3.3.2. Свободнорадикальные процессы
- •3.3.3. Теории непрямого действия ии. Теория липидных радиотоксинов
- •Глава 3.4. Воздействие ии на различных уровнях
- •3.4.1. Этапы воздействия
- •3.4.2. Молекулярный уровень
- •3.4.3. Репарационные системы
- •3.4.4. Клеточный уровень
- •3.4.5. Восстановление после облучения на клеточном уровне
- •3.4.6. Радиочувствительность
- •Средняя летальная доза в рентгенах
- •3.4.7. Радиочувствительность клеток костного мозга и крови. Закон Бергонье-Трибондо
- •Глава 3.6. Радиочувствительность организмов и тканей
- •3.6.1. Радиочувствительность при внешнем облучении
- •3.6.2. Тканевая радиочувствительность
- •3.6.3. Механизмы радиоэмбриологического эффекта и оценка его последствий
- •3.6.4. Общие принципы функционирования самообновляющейся системы на примере костного мозга
- •Глава 3.7. Лучевая болезнь человека
- •3.7.1. Лучевая болезнь человека как биологический эффект
- •Шкала зависимости биологических эффектов при общем облучении организма
- •3.7.2. Олб при относительно равномерном облучении
- •3.7.3. Острые лучевые поражения при неравномерном поражении
- •Глава 3.9. Хроническая лучевая болезнь и влияние малых доз радиации
- •3.9.1. Хроническая лучевая болезнь
- •3.9.2. Действие малых доз радиации
- •Минимальная абсолютно летальная доза для различных видов
- •Принципиальные отличия между облучением в больших и малых дозах
- •3.9.3. Опосредованные эффекты облучения
- •Глава 3.10. Отдаленные последствия облучения
- •3.10.1. Формы и проявления отдалённых последствий
- •3.10.2. Механизм отдалённых последствий
- •Глава 3.11. Процессы восстановления в облучённом организме
- •3.11.1. Кинетика восстановления организма после тотального облучения
- •3.11.2. Фазное изменение радиорезистентности организма в раннем пострадиационном периоде
- •Раздел 4 (лекции № 8)
- •4.1.2. Планируемое повышенное облучение
- •Глава 4.3. Требования к ограничению облучения населения
- •4.3.1. Ограничение техногенного облучения в нормальных условиях
- •4.3.2. Ограничение медицинского облучения
- •4.3.3. Санитарные правила
- •Определение класса работ в лаборатории
- •Раздел 5 (лекция № 9) ионизирующее излучение на службе у человека
- •5.1. Циклотрон и его применение
- •5.2. Использование радиоактивных изотопов в качестве индикаторов (меченых атомов)
- •5.3. Датировака событий с помощью радиоуглерода
- •5.4. Радиобиология – Продовольственной программе
- •Оптимальные условия совместного использования облучения и умеренного нагрева для продления сроков хранения фруктовых соков
- •Продление сроков хранения свежей рыбы и морских продуктов при гамма-облучении
- •Учебное издание
- •Радиобиология Курс лекций
- •210038, Г. Витебск, Московский проспект, 33.
3.4.6. Радиочувствительность
Вскоре после открытия биологического действия ионизирующих излучений было установлено, что любой живой объект может быть убит этим агентом. Однако дозы излучения, приводящие различные объекты к гибели, отличаются в очень широких пределах, даже на несколько порядков (см. табл. 12). Иными словами, каждому биологическому виду свойственна своя мера чувствительности к действию ионизирующей радиации, своя радиочувствительность.
Степень радиочувствительности сильно варьирует и в пределах одного вида – индивидуальная радиочувствительность, а для определенного индивидуума зависит также от возраста и пола. Кроме того, даже в одном организме различные клетки и ткани значительно различаются по радиочувствительности, и наряду с чувствительными (кроветворная система, эпителий слизистой тонкого кишечника) имеются устойчивые ткани (мышечная, нервная, костная), которые принято называть радиорезистентными. Впрочем, деление тканей на радиочувствительные и радиорезистентные весьма условно, так как зависит от избранного критерия. Далее будет показано, что ткани, относящиеся к радиорезистентным по непосредственным лучевым реакциям, оказываются весьма радиочувствительными по отдаленным последствиям.
Таблица 12
Средняя летальная доза в рентгенах
Организм |
Доза |
Организм |
Доза |
Обезьяны |
550–600 |
Карась |
1800 |
Собака |
400 |
Змеи |
3000–20000 |
Кролик |
800 |
Насекомые |
От 1000 до 100000 |
Крыса |
600 |
Дрожжи |
30000 |
Мышь |
550 |
Инфузории |
300000–330000 |
Куры |
600–1000 |
Высшие растения |
1000–150000 |
Очевидно, что радиочувствительность можно рассматривать как пример многочисленных реакций биосистемы на воздействие разных внешних агентов, в данном случае – на излучение. Отсюда вполне логично характеризовать радиочувствительность любой регистрируемой реакцией, вне зависимости от ее значения для жизнеспособности объекта. Но тогда и сравнение различных объектов следует производить по степени проявления данной реакции. Между тем многие лучевые реакции строго специфичны для определенных объектов (в частности, для определенных тканей и систем) и отсутствуют у других.
Например, такая универсальная реакция клеток на облучение, как задержка деления, легко выявляется в активно пролиферирующих тканях и, по понятным причинам, не может быть обнаружена в тканях, где клеточное деление выражено слабо или отсутствует.
В равной степени не могут служить сравнительными показателями радиочувствительности многочисленные функциональные реакции, являющиеся проявлением высокодифференцированных свойств определенных тканей, органов или систем. К их числу относятся активация и ингибирование специфического метаболизма, продукция определенных ферментов, гормонов и других биологических веществ.
Наиболее ярко неправомерность использования специфических реакций в качестве критерия оценки исходной и особенно сравнительной радиочувствительности можно продемонстрировать на примере центральной нервной системы (ЦНС). В этом случае часто регистрируют изменение электроэнцефалограммы или условно-рефлекторной деятельности под влиянием облучения, т.е. показателей, присущих только ЦНС и отражающих крайне специфические черты ее функциональной деятельности. Между тем именно преходящие изменения этих жизненно малозначащих показателей, наблюдающиеся уже при весьма малых дозах излучения, и отсутствие поражения морфологических структур мозга при очень высоких дозах являются основанием для рассуждений о том, что одна и та же система может быть высокорадиочувствительной и в то же время отличаться малой поражаемостью. Легко видеть, что в этом случае смешивают два понятия: преходящие функциональные реакции, характеризующие высокую реактивность ЦНС, – свойство, присущее ей и закрепленное эволюцией в связи с необходимостью реагировать на любые изменения внешней среды, и, напротив, низкую чувствительность к поражающему действию радиации.
Возвращаясь к наиболее общей интерпретации понятия радиочувствительности с учетом рассмотренных примеров, представляется вполне приемлемым в качестве ее мерила использовать величину, обратную отношению доз ионизирующего излучения, вызывающих количественно равные специфические эффекты (одного типа) в сравниваемых системах. К этому следует лишь добавить, что обязательным требованием к используемому критерию является его строгая количественная зависимость от дозы излучения.
Применительно к абсолютному большинству радиобиологических задач в качестве такого интегрального критерия радиочувствительности обычно используют либо непосредственно изменение выживаемости изучаемых объектов в результате облучения в определенных дозах, либо такие количественные показатели поражения, которые в данном диапазоне доз однозначно связаны определенным соотношением с выживаемостью. Наиболее часто с этой целью используют так называемую величину ЛД50 – летальную дозу, облучение в которой вызывает 50%-ную гибель биообъектов. Величины ЛД50 в природе различаются довольно значительно даже в пределах одного вида.