Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКОЛОГИЯ / Литература / radiobiologia пособие.doc
Скачиваний:
213
Добавлен:
25.03.2015
Размер:
2.4 Mб
Скачать

Раздел 5 (лекция № 9) ионизирующее излучение на службе у человека

5.1. Циклотрон и его применение

В1930 году Э. Лоуренсом (США) был создан и первый циклический ускоритель –циклотрон на энергию протонов 1 МэВ (его диаметр был 25 см). Схема устройства циклотрона показана на рис. 34.

Тяжелые заряженные частицы (протоны, ионы) ускоряются в циклотроне переменным ускоряющим полем фиксированной частоты, приложенным к ускоряющим электродам (их два и они называются дуантами). Частицы с зарядом Ze и массой m движутся в постоянном магнитном поле напряженностью B, направленном перпендикулярно плоскости движения частиц, по раскручивающейся спирали. Радиус R траектории частицы, имеющей скорость v, определяется формулой:

R = , (5.1)

где γ – релятивистский фактор.

В циклотроне для нерелятивистской (γ ≈ 1) частицы в постоянном и однородном магнитном поле радиус орбиты пропорционален скорости (1), а период обращения

, (5.2)

т.е. не зависит от энергии частицы. Частицы попадают из инжектора в ускорительную камеру близко к её центру и начинают вращаться по орбите малого радиуса. В зазоре между дуантами частицы ускоряются импульсным электрическим полем (внутри полых металлических дуантов электрического поля нет). В результате энергия и радиус орбиты возрастают. Повторяя ускорение электрическим полем на каждом обороте, энергию и радиус орбиты доводят до максимально допустимых значений. На последнем витке спирали включается отклоняющее электрическое поле, выводящее пучок наружу.

Основные области использования циклотрона:

  • исследования и разработка технологии получения радионуклидов для ядерной медицины;

  • синтез радиофармпрепаратов для медицинской диагностики;

  • производство трековых мембран для изготовления фильтров очистки воды;

  • нейтронная терапия онкологических больных;

  • активационный анализ на заряженных частицах;

  • облучение образцов материалов пучками заряженных частиц для исследования и модификации поверхности материалов;

  • структурно-фазовый анализ сплавов стали и геологических образцов.

Синтез радиофармпрепаратов для ядерной медицины. Радиофармпрепаратами называют специально синтезированные биологически активные вещества, часть молекул которых содержит определенный радионуклид (молекулы как бы «мечены» радионуклидом). Введенные радионуклиды ведут себя в биологических системах так же, как и стабильные изотопы этих элементов. Отслеживая радионуклид по его излучению, которое ничтожно мало с точки зрения воздействия на организм, но при этом надежно измеряется высокочувствительными детекторами, медики получают возможность изучать миграцию, превращения, накопление, выведение «меченого» биологически активного вещества и на основании этого сделать вывод о функционировании исследуемых органов или тканей.

В качестве примера использования данных радиофармпрепаратов можно привести диагностику и лечение щитовидной железы с помощью йода-123. Именно радиоизотопной диагностике с применением радиоизотопов йода человечество обязано современным представлениям о функциях щитовидной железы и успехам лечения многих заболеваний, с ней связанных. Препараты, содержащие йод, широко используются для изучения обменных процессов во всем организме, диагностики и лечения целого спектра заболеваний, поскольку йод входит в состав многих биологических тканей.

Таллий-199 используется для диагностики перфузии сердца. Перфузное сканирование миокарда позволяет получить информацию о наличии инфаркта миокарда, определить расход крови (кровоток) через коронарные сосуды.

Методы радиоизотопной диагностики дают такую информацию о пациенте, которую невозможно получить никакими другими методами.

Производство и применение трековых мембран. На базе ускорителей различных типов разработана технология и освоено производство трековых мембран из полимерных пленок. Трековые (ядерные) мембраны получают путем облучения полимерной пленки толщиной 10–12 мкм, шириной 300 мм и длиной порядка 1500 м ионами азота, аргона на ускорителе. Каждый ион вдоль своей траектории повреждает полимерные молекулы, оставляя скрытый след – трек (отсюда и название мембран – «трековые»). Если облученную пленку затем засветить ультрафиолетовым светом и подвергнуть травлению в щелочи при заданной температуре, в ней по каждому треку образуется сквозное отверстие – пора цилиндрической формы, диаметр которой прямо пропорционален времени травления и может изменяться от сотых долей микрона до нескольких микрон (для сравнения: толщина человеческого волоса – 50 микрон) (рис. 35). Диаметры всех пор оказываются совершенно одинаковыми. Размер пор можно варьировать от 0,03 до 5 мкм.

Трековые мембраны с высокой пористостью являются высококачественным фильтрующим материалом, позволяющим осуществлять процесс микрофильтрации жидкостей и газов с высокой селективностью, включая стерилизующую фильтрацию. Такие мембраны могут найти применение в микроэлектронике, биотехнологии, медицине, фармацевтической, пищевой и парфюмерной промышленности, экологии. Использование трековых мембран для очистки воды является одним из наиболее перспективных направлений обеспечения экологической безопасности населения.

В настоящее время созданы образцы и организовано производство бытовых мембранных фильтров питьевой воды. Основные преимущества для потребителя – высокая степень очистки от микробных загрязнений – 99,9999 %.

Нейтронная терапия онкологических больных. Лучевая терапия – метод лечения опухолевых и ряда неопухолевых заболеваний с помощью ионизирующих излучений. В качестве источников облучения используются ускорители или радиоизотопные установки. Эффект лучевой терапии основан на повышенной чувствительности раковых клеток к ионизирующему излучению. Под действием этого излучения в клетках развивается огромное количество мутаций, и они погибают. При этом нормальные клетки организма не подвергаются таким изменениям, так как более устойчивы к облучению. Гибель опухоли происходит также за счет специальной методики облучения, когда лучи подводятся к опухоли с разных сторон. В результате в опухоли накапливается максимальная доза.

По виду излучения лучевая терапия делится на рентгенотерапию и гамма терапию. Однако некоторые виды опухолей устойчивы к действию данных видов излучений. В связи, с чем для достижения максимальной избирательности противоопухолевого радиационного эффекта предложено применять тяжелые ядерные частицы: протоны, тяжелые ионы, нейтроны.