
- •С.И. Кулиев
- •Часть 1
- •1.1. Цели и задачи дисциплины, её место в учебном процессе
- •1.2. Основные требования к знаниям и умениям
- •1.3. Межпредметные связи
- •1.4. Программа курса «Радиобиология» Введение
- •1. Физические основы радиобиологии
- •2. Основы радиоэкологии
- •3. Токсикология радионуклидов
- •4. Биологическое действие ионизирующих излучений
- •5. Гигиенические аспекты радиационной безопасности
- •6. Излучение как инструмент исследования
- •1.6. Распределение часов по семестрам и видам занятий
- •1.7. Тематический план лекций
- •1.8. Тематический план лабораторно- практических занятия, их содержание и объем в часах
- •1.9. Вопросы к лабораторно- практическим занятиям Занятие № 1 Радиоактивность. Взаимодействие различных видов ии с веществом
- •Занятие № 2 Токсикология радионуклидов Биологическое действие ии
- •Занятие № 3 Радиационные повреждения на различных уровнях организации Радиационная безопасность
- •1.10. Контрольные вопросы для подготовки к зачёту
- •1.11. Основная и дополнительная литература
- •Часть 2
- •Раздел 1 (лекции № 1–2) радиобиология как предмет. Физические основы радиобиологии
- •После изучения данного раздела Вы должны будете
- •Глава 1.1. Радиобиология как предмет
- •1.1.1. Радиобиология как предмет
- •Задачи радиобиологии:
- •1.1.2. История открытия радиации
- •1.1.3.Три этапа развития радиобиологии
- •Глава 1.2. Физико-химические основы радиобиологии
- •1.2.1. Характеристика атомного ядра
- •1.2.2. Ядерные силы, дефект массы
- •1.2.3. Типы ядерных превращений
- •1.2.4. Закон радиоактивного распада
- •1.2.5. Активность радиоактивного элемента
- •Основные физические величины, используемые в радиационной биологии
- •Глава 1.3. Природа ионизирующих излучений
- •1.3.1. Виды ии
- •Энергия квантов и длины волн различных природных излучений
- •1.3.2. Взаимодействие радиоактивных излучений с веществом
- •Раздел 2 (лекции № 3–4) основы радиоэкологии
- •Глава 2.1. Естественный и антропогенный радиационный фон
- •2.1.1. Космическое излучение, его природа, характеристики.
- •2.1.2. Естественный радиационный фон
- •Действие ионизирующего излучения на внешнюю среду
- •2.1.3. Радиоактивные элементы земных пород и пищи
- •Характеристики основных изотопов
- •2.1.4. Семейства радиоактивных элементов
- •Семья радионуклидов урана
- •2.1.5. Радиационные пояса Земли
- •Глава 2.2. Антропогенный радиационный фон
- •2.2.1. Искусственные источники ии
- •2.2.2. Деление и синтез ядер
- •2.2.3. Строительные материалы
- •Глава 2.3. Перемещения радиоактивных веществ в биосфере
- •2.3.1. Общие закономерности
- •2.3.2. Поведение радионуклидов в атмосфере
- •2.3.3. Поведение радионуклидов в почве
- •Классификация химических элементов по коэффициентам накопления
- •2.3.4. Поведение радионуклидов в воде
- •Глава 2.4. Экологические проблемы атомной промышленности
- •2.4.1. Радиоактивные отходы
- •Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности
- •Классификация твердых радиоактивных отходов по уровню радиоактивного загрязнения
- •2.4.2. Возможности технических средств радиационной разведки (рдр)
- •Раздел 3 (лекции № 5–7) биологическое действие ионизирующего излучения на живые объекты
- •После изучения данного раздела Вы должны будете
- •Глава 3.1. Токсичность радионуклидов
- •3.1.1. Факторы, обуславливающие токсичность радионуклидов
- •Коэффициенты относительной биологической эффективности (обэ) для разных видов излучения
- •Типы распределения радиоактивных элементов в организме
- •3.1.2. Классификация радионуклидов по их токсичности для человека и животных
- •Глава 3.2. Накопление радионуклидов в органах и тканях
- •3.2.1. Особенности биологического действия инкорпорированных радионуклидов
- •3.2.2. Биологическое действие инкорпорированного j131
- •3.2.3. Биологические эффекты при внутреннем облучении i37Cs
- •3.2.4. Комбинированное действие инкорпорированных Cs137 и j131
- •Глава 3.3. Механизм биологического действия ии
- •3.3.1. Прямое и непрямое действие радиации
- •3.3.2. Свободнорадикальные процессы
- •3.3.3. Теории непрямого действия ии. Теория липидных радиотоксинов
- •Глава 3.4. Воздействие ии на различных уровнях
- •3.4.1. Этапы воздействия
- •3.4.2. Молекулярный уровень
- •3.4.3. Репарационные системы
- •3.4.4. Клеточный уровень
- •3.4.5. Восстановление после облучения на клеточном уровне
- •3.4.6. Радиочувствительность
- •Средняя летальная доза в рентгенах
- •3.4.7. Радиочувствительность клеток костного мозга и крови. Закон Бергонье-Трибондо
- •Глава 3.6. Радиочувствительность организмов и тканей
- •3.6.1. Радиочувствительность при внешнем облучении
- •3.6.2. Тканевая радиочувствительность
- •3.6.3. Механизмы радиоэмбриологического эффекта и оценка его последствий
- •3.6.4. Общие принципы функционирования самообновляющейся системы на примере костного мозга
- •Глава 3.7. Лучевая болезнь человека
- •3.7.1. Лучевая болезнь человека как биологический эффект
- •Шкала зависимости биологических эффектов при общем облучении организма
- •3.7.2. Олб при относительно равномерном облучении
- •3.7.3. Острые лучевые поражения при неравномерном поражении
- •Глава 3.9. Хроническая лучевая болезнь и влияние малых доз радиации
- •3.9.1. Хроническая лучевая болезнь
- •3.9.2. Действие малых доз радиации
- •Минимальная абсолютно летальная доза для различных видов
- •Принципиальные отличия между облучением в больших и малых дозах
- •3.9.3. Опосредованные эффекты облучения
- •Глава 3.10. Отдаленные последствия облучения
- •3.10.1. Формы и проявления отдалённых последствий
- •3.10.2. Механизм отдалённых последствий
- •Глава 3.11. Процессы восстановления в облучённом организме
- •3.11.1. Кинетика восстановления организма после тотального облучения
- •3.11.2. Фазное изменение радиорезистентности организма в раннем пострадиационном периоде
- •Раздел 4 (лекции № 8)
- •4.1.2. Планируемое повышенное облучение
- •Глава 4.3. Требования к ограничению облучения населения
- •4.3.1. Ограничение техногенного облучения в нормальных условиях
- •4.3.2. Ограничение медицинского облучения
- •4.3.3. Санитарные правила
- •Определение класса работ в лаборатории
- •Раздел 5 (лекция № 9) ионизирующее излучение на службе у человека
- •5.1. Циклотрон и его применение
- •5.2. Использование радиоактивных изотопов в качестве индикаторов (меченых атомов)
- •5.3. Датировака событий с помощью радиоуглерода
- •5.4. Радиобиология – Продовольственной программе
- •Оптимальные условия совместного использования облучения и умеренного нагрева для продления сроков хранения фруктовых соков
- •Продление сроков хранения свежей рыбы и морских продуктов при гамма-облучении
- •Учебное издание
- •Радиобиология Курс лекций
- •210038, Г. Витебск, Московский проспект, 33.
1.2.2. Ядерные силы, дефект массы
Казалось бы, что согласно закону Кулона, положительные протоны должны были бы отталкиваться. Однако, в действительности ядра атомов достаточно прочные образования. Считают, что наиболее вероятно ядерные силы возникают в процессе непрерывного обмена между нуклонами с помощью особых частиц (квантов ядерного поля), которые назвали пи-мезонами. Ядерные силы значительны только на очень малых расстояниях, сравнимых с диаметром самих ядер. Каждый нуклон взаимодействует с определённым количеством соседних нуклонов, поэтому при увеличении числа нуклонов в ядре ядерные силы ослабевают. Этим объясняется меньшая устойчивость ядер тяжёлых элементов.
Чтобы разделить ядро на протоны и нейтроны и удалить их из поля действия ядерных сил нужно затратить энергию. Эта энергия называется энергией связи ядра. При образовании ядра эта энергия выделяется. Если рассчитать массу ядра по формуле:
mя = mn Nn + mp Np (1.1)
то она окажется меньше массы её составляющих на какую- то величину. Разница между массой ядра расчетной и массой ядра фактической называется дефектом массы:
m = mрасч – mфакт (1.2)
Дефект массы показывает, насколько прочно связаны частицы в ядре, а также сколько энергии выделилось при образовании ядра из отдельных нуклонов. Этот расчёт можно произвести на основании уравнения Эйнштейна:
E = mc2 (1.3)
Любому изменению массы соответствует эквивалентное изменение энергии. Средняя энергия связи, приходящаяся на один нуклон, называется удельной энергией связи. Например, энергия ядра дейтерия составляет 2,2 МэВ, азота – 104,56, а урана – 1800 МэВ. Для сравнения, химическая энергия связи атомов в молекулах в расчёте на один атом равна нескольким электронвольтам. Этим объясняется, почему ядерные реакции характеризуются в миллион раз большими энергиями, чем обычные химические реакции.
Радиоактивность – это свойство ядер определённых элементов самопроизвольно (т.е. без каких-то внешних воздействий) превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным распадом. Самопроизвольный распад ядра изображен на рис. 6.
Рис. 6. Схема деления ядра.
Радиоактивность является исключительно свойством атомного ядра и зависит только от его внутреннего состояния. На скорость течения радиоактивных превращений не оказывают влияния изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.
1.2.3. Типы ядерных превращений
Если в ядре слишком много протонов или нейтронов, то такие ядра не устойчивы и претерпевают самопроизвольные превращения, в результате которых изменяется состав ядра, и, следовательно, ядро атома одного элемента превращается в ядро другого элемента. При этом процессе ядра, испускают радиоактивные излучения.
Существуют следующие виды ядерных превращений: альфа-распад, бета-распад (электронный и позитронный), электронный захват, внутренняя конверсия.
Альфа-распад – состоит в самопроизвольном превращении ядра с испусканием α-частицы (см. рис. 7).
Рис. 7. Схема образования альфа-излучения.
В общем виде альфа-распад представляется таким образом: где X и Υ – символы соответственно материнского и дочернего ядер.
+ (1.4)
Бета-распад – заключается во внутриядерном взаимном превращении нейтрона и протона. Если в ядре имеется излишек нейтронов, то происходит электронный распад, при котором один из нейтронов превращается в протон, а ядро испускается электрон и антинейтрино (cм. рис. 8).
Рис. 8. Схема образования бета-излучения.
При этом распаде заряд ядра и соответственно атомный номер элемента увеличивается на единицу.
+ β + ν–, (1.5)
где ν– – антинейтрино, а – электрон.
При позитронном распаде ядро испускает частицу такой же массы, как и электрон, но имеющую заряд +1, и нейтрино, а один из протонов превращается в нейтрон:
+ β+ + ν, (1.6)
где ν – нейтрино, + – позитрон.
Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» электрон или взаимодействует со свободным электроном, образую пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частицы (e+ + e–). Процесс превращения пары «электрон-позитрон» в два гамма-кванта получил название аннигиляции. Т.о. при позитронном распаде в конечном итоге за пределы ядра вылетают не две частицы, а два гамма-кванта, каждый из которых обладает энергией, равной 0,511МэВ.
Электронный захват – один из протонов ядра забирает электрон с одной из оболочек атома, чаще всего с ближайшего к нему слоя и превращается в нейтрон.
Схема электронного захвата:
+ β + ν (1.7)
Освободившееся место заполняется электроном из более отдалённых от ядра слоёв оболочки атома. Избыток энергии испускается атомом в виде характеристического рентгеновского излучения.
В зависимости от того, с какой внутренней оболочки захватывается электрон, иногда различают К-захват, L-захват и т.д.
Внутренняя конверсия – переход возбуждённого ядра в состояние с меньшей энергией может происходить путём внутренней конверсии, или конверсии с образованием электронно-позитронных пар. Ядро передаёт энергию возбуждения одному из электронов внутренних слоёв, который в результате этого удаляется за пределы атома. Такие электроны получили название электронов внутренней конверсии.