
ЭКОЛОГИЯ / Литература / РАДИАЦИОННАЯ ЭКОЛОГИЯ
.pdf
|
|
|
2.5. Радиоактивные отходы и экология |
||
|
|
|
|
|
|
|
|
|
|
|
|
Дисбалансная вода |
|
Водоем-охладитель |
|
Из источника |
|
|
|
питательной воды |
|||
|
|
|
|
|
|
|
|
|
|
|
|
Хранение |
Система снабжения |
очищенной воды |
АЭС технической водой |
Специльная |
Теплообменное |
очистка воды |
оборудование АЭС |
Система снабжения АЭС питательной водой
Основные технологические контуры АЭС
Течи теплообменного оборудования
Протечки организованные и неорганизованные
Сбор и хранение воды
Рис. 8. Структурная схема оборотного водоснабжения АЭС
В процессе самоочищения воды эти радионуклиды опускаются на дно и постепенно захораниваются в донных отложениях, где их концентрация может достигать 60 Бк/кг. Относительное распределение радионуклидов в экосистемах водоемов-охладителей АЭС, по данным Ю.А. Егорова приведено в таблице 27. По мнению этого автора, такие водоемы могут быть использованы в любых народно-хозяйственных и рекреационных целях.
Таблица 27 – Относительное распределение радионуклидов в водоемах-охладителях, %
Компоненты экосистем |
137Cs |
134 Cs |
60 Со |
54 Mn |
Вода |
2-5 |
2-5 |
0,2-0,4 |
0,2-0,4 |
Взвеси |
0,25 |
0,25 |
1 |
1 |
Гидробионты: |
|
|
|
|
моллюски |
0,05-2 |
0,05-2 |
0,01 |
0,01 |
нитчатые водоросли |
5 10-3 |
5 10-3 |
1 10-3 |
1 10-3 |
высшие растения |
10-2 |
2 10-3 |
2 10-3 |
5 10-4 |
рыбы |
1 10-4 |
2 10-4 |
2 10-4 |
5 10-4 |
Донные отложения |
95-98 |
95-98 |
98,5 |
98-98,5 |
|
|
|
|
|
91
Р а з д е л 2 |
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И ЗАГРЯЗНЕНИЙ |
|
ОКРУЖАЮЩЕЙ СРЕДЫ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ |
Наносят ли вред окружающей среде атомные электростанции? Опыт эксплуатации отечественных АЭС показал, что при правильном техническом обслуживании и налаженном мониторинге окружающей среды они практически безопасны. Радиоактивное воздействие на биосферу этих предприятий не превышает 2% от местного радиационного фона. Ландшафтно-геохимические исследования в десятикилометровой зоне Белоярской АЭС показывают, что плотность загрязнения плутонием почв лесных и луговых биоценозов не превышает 160 Бк/м2 и находится
впределах глобального фона (Павлецкая, 1967). Расчеты показывают, что в радиационном отношении гораздо более опасны тепловые электростанции, поскольку сжигаемые на них уголь, торф и газ содержат природные радионуклиды семейств урана и тория. Средние индивидуальные дозы облучения в районе расположения тепловых электростанций мощностью 1 ГВт/год составляют от 6 до 60 мкЗв/год, а от выбросов АЭС – от 0,004 до 0,13 мкЗв/год. Таким образом АЭС при нормальной их эксплуатации являются экологически более чистыми, чем тепловые электростанции.
Опасность АЭС заключается лишь в аварийных выбросах радионуклидов и последующем распространении их во внешней среде атмосферным, водным, биологическим и механическим путями. В этом случае биосфере наносится ущерб, выводящий из строя огромные территории, которые долгие годы не могут использоваться в хозяйственной деятельности.
Так, в 1986 г. на Чернобыльской АЭС в результате теплового взрыва
вокружающую среду было выброшено до 10% ядерного материала, находящегося в активной зоне реактора.
За все время эксплуатации АЭС в мире официально зафиксировано около 150 аварийных случаев выбросов радионуклидов в биосферу. Это внушительная цифра, показывающая, что резерв повышения безопасности атомных реакторов пока весьма велик. Поэтому очень важен мониторинг окружающей среды в районах АЭС, который играет решающую роль в выработке способов локализации радиоактивных загрязнений и их ликвидации. Особая роль здесь принадлежит научным исследованиям в области изучения геохимических барьеров, на которых радиоактивные элементы теряют свою подвижность и начинают концентрироваться.
Радиоактивные отходы, содержащие радионуклиды с периодом полураспада менее 15 суток, собираются отдельно и выдерживаются в местах временного хранения для снижения активности до безопасных уровней, после чего удаляются как обычные промышленные отходы.
92

2.5. Радиоактивные отходы и экология
Передача РАО из организации на переработку или захоронение должна производиться в специальных контейнерах.
Переработку, долговременное хранение и захоронение РАО производят специализированные организации. В отдельных случаях возможно осуществление в одной организации всех этапов обращения с РАО, если это предусмотрено проектом или на это выдано специальное разрешение органов государственного надзора.
Эффективная доза облучения населения, обусловленная радиоактивными отходами, включая этапы хранения и захоронения, не должна превышать 10 мкЗв/год.
Наибольший объем РАО поставляют атомные электростанции. Жидкие РАО АЭС – это кубовые остатки выпарных аппаратов, пульпы механических и ионообменных фильтров очистки контурной воды. На АЭС они хранятся в бетонных емкостях, облицованных нержавеющей сталью. Затем они подвергаются отверждению и захораниваются по специальной технологии. К твердым отходам АЭС относятся вышедшее из строя оборудование и его детали, а также израсходованные материалы. Как правило, они имеют низкую активность и утилизируются на АЭС. Отходы со средней и высокой активностью отправляют на захоронение в специальные подземные хранилища.
Хранилища радиоактивных отходов размещаются глубоко под землей (не менее 300 м), причем, за ними устанавливается постоянное наблюдение, так как радионуклиды выделяют большое количество тепла. Подземные хранилища РАО должны быть долговременными, рассчитанными на сотни и тысячи лет. Они размещаются в сейсмически спокойных районах, в однородных скальных массивах лишенных трещин. Наиболее подходящими для этого являются гранитные геологические комплексы горных массивов, прилегающих к побережью океана. В них удобнее всего сооружать подземные туннели для РАО (Кедровский, Чесноков, 2000). Надежные хранилища РАО могут размещаться в многолетнемерзлых породах. Одно из них планируется создать на Новой Земле.
Для облегчения захоронения и надежности последнего жидкие высокоактивные РАО превращают в твердые инертные вещества. В настоящее время основными методами переработки жидких РАО являются цементирование и остеклование с последующим заключением в стальные контейнеры, которые хранятся под землей на глубине нескольких сотен метров.
Исследователи Московского объединения «Радон» предложили методику обращения жидких РАО в стойкую алюмосиликатную керамику
93
Р а з д е л 2 |
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И ЗАГРЯЗНЕНИЙ |
|
ОКРУЖАЮЩЕЙ СРЕДЫ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ |
при температуре 900°С с использованием карбамида (мочевины), солей фтора и природных алюмосиликатов (Лащенова, Лифанов, Соловьев, 1999).
Однако при всей своей прогрессивности перечисленные приемы имеют существенный недостаток – объемы радиоактивных отходов при этом не сокращаются. Поэтому ученые находятся в постоянном поиске других методов захоронения жидких РАО. Один из таких методов – селективная сорбция радионуклидов. В качестве сорбентов исследователи предлагают использовать природные цеолиты, с помощью которых может быть достигнута очистка жидкостей от радиоизотопов цезия, кобальта и марганца до безопасных концентраций. При этом объем радиоактивного продукта сокращается в десятки раз (Савкин, Дмитриев, Лифанов и др., 1999). Ю.В. Островский, Г.М. Зубарев, А.А. Шпак и другие новосибирские ученые (1999) предложили гальванохимическую обработку жидких радиоактивных отходов.
Перспективный метод захоронения высокоактивных отходов – удаление их в космос. Метод предложен академиком А.П. Капицей в 1959 году. Сейчас ведутся интенсивные исследования в этой области.
Радиоактивные отходы в большом количестве производят атомные электростанции, исследовательские реакторы и военная сфера (ядерные реакторы кораблей и подводных лодок).
Согласно оценке МАГАТЭ к концу 2000 года из ядерных реакторов выгружено 200 тыс. тонн облученного топлива.
Предполагается, что основная часть его будет удаляться без переработки (Канада, Финляндия, Испания, Швеция, США), другая часть будет перерабатываться (Аргентина, Бельгия, Китай, Франция, Италия, Россия, Швейцария, Англия, Германия).
Бельгия, Франция, Япония, Швейцария, Англия хоронят блоки с радиоактивными отходами, заключенными в боросиликатное стекло.
Захоронение на дне морей и океанов. Захоронения радиоактивных отходов в морях и океанах практиковалось многими странами. Первыми это сделали США в 1946 году, затем Великобритания в 1949 году, Япония в 1955 году, Нидерланды в 1965 году. Первый морской могильник жидких радиоактивных отходов появился в СССР не позднее
1964 года.
В морских захоронениях Северной Атлантики, где, по данным МАГАТЭ, с 1946 по 1982 годы 12 стран мира затопили радиоактивные отходы суммарной активностью более МКи (одного мегаКюри). Регионы земного шара по величине суммарной активности ныне распределяются следующим образом:
94

2.5. Радиоактивные отходы и экология
а) Северная Атлантика примерно 430 кКи; б) моря Дальнего Востока около 529 кКи; в) Арктика не превышает 700 кКи.
Со времени первого затопления высокоактивных отходов в Карском море прошло 25-30 лет. За эти годы активность реакторов и отработавшего топлива естественным путем снизилась во много раз. На сегодня в северных морях суммарная активность РАО составляет 115 кКи.
При этом надо полагать, что морскими захоронениями радиоактивных отходов занимались грамотные люди профессионалы в своей области. РАО затапливались во впадинах бухт, где течениями и подводковыми водами не затрагиваются эти глубинные слои. Потому РАО там «сидят» и никуда не распространяются, а только поглощаются специальными осадками.
Надо также учесть, что радиоактивные отходы с наибольшей активностью законсервированы твердеющими смесями. Но даже если радионуклиды попадут в морскую воду они сорбируются данными осадками в непосредственной близости от объекта затопления. Это было подтверждено прямыми измерениями радиационной обстановки.
Наиболее часто обсуждаемой возможностью для захоронений РАО является использование захоронений в глубоком бассейне, где средняя глубина составляет не менее 5 км. Глубоководное скалистое дно океана покрыто слоем отложений, и неглубокое погребение под десятками метров отложений может быть получено простым сбрасыванием контейнера за борт. Глубокое погребение под сотнями метров отложений потребует бурения и закладки отходов. Отложения насыщены морской водой, которая через десятки или сотни лет может разъесть (в результате коррозии) канистры с топливными элементами из использованного топлива. Однако предполагается, что сами отложения адсорбируют выщелоченные продукты деления, препятствуя их проникновению в океан. Расчеты последствия крайнего случая разрушения оболочки контейнера сразу после попадания в слой отложений показали, что диспергирование топливного элемента, содержащего продукты деления, под слоем отложений случится не ранее чем через 100-200 лет. К тому времени уровень радиоактивности упадет на несколько порядков.
Окончательное захоронение в соляных отложениях. Соляные от-
ложения являются привлекательными местами для долговременных захоронений радиоактивных отходов. Тот факт, что соль находится в твердой форме в геологическом слое, свидетельствует об отсутствии циркуляции грунтовых вод с момента его образования несколько сот миллионов лет тому назад. Таким образом, топливо, помещенное в та-
95
Р а з д е л 2 |
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И ЗАГРЯЗНЕНИЙ |
|
ОКРУЖАЮЩЕЙ СРЕДЫ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ |
ком отложении, не будет подвергаться выщелачиванию грунтовыми водами. Соляные отложения такого типа встречаются очень часто.
Геологическое захоронение. Геологическое захоронение подразумевает размещение контейнеров, содержащих отработанные топливные элементы, в стабильном пласте, обычно на глубине 1 км. Можно допустить, что такие породы содержат воду, так как глубина их залегания значительно ниже зеркала грунтовых вод. Однако ожидается, что вода не будет играть большой роли при теплопередаче от контейнеров, поэтому хранилище должно быть спроектировано с учетом возможности поддержания температуры поверхности канистр не более чем 100 С или около того. Тем не менее присутствие грунтовых вод означает, что материал, выщелоченный из хранящихся блоков, может проникнуть через пласт с водой. Это является важным вопросом при проектировании таких систем. Циркуляция воды сквозь породу как результат разности плотностей, вызванный температурным градиентом, в течение длительного времени важна для определения миграции продуктов деления. Этот процесс очень медленный, и поэтому не ожидается, что от него будут серьезные неприятности. Однако для систем долговременного захоронения он должен быть обязательно принят во внимание.
Выбор между различными методами захоронений будет определяться доступностью удобных мест, потребуется еще много биологических
иокеанографических данных. Тем не менее, исследования во многих странах показывают, что использованное топливо можно обрабатывать
ипроизводить захоронение без чрезмерного риска для человека и окружающей среды.
Впоследнее время всерьез обсуждается возможность забрасывать контейнеры с долгоживущими изотопами с помощью ракет на невидимую обратную сторону Луны. Вот только как обеспечить стопроцентную гарантию, что все запуски будут успешными, ни одна из ракетносителей не взорвется в земной атмосфере и не засыплет ее смертоносным пеплом? Что бы ни говорили ракетчики, риск очень велик. Да и вообще мы не знаем, для чего понадобится обратная сторона Луны нашим потомкам. Было бы крайне легкомысленно превратить ее в убийственную радиационную свалку.
Захоронение плутония. Осенью 1996 года в г. Москве проходил Международный научный семинар по плутонию. Это чрезвычайно токсичное вещество получается в результате работы атомного реактора и раньше использовалось для производства ядерных боеприпасов. Но за годы использования ядерной энергии плутония на Земле скопились уже
96

2.5. Радиоактивные отходы и экология
тысячи тонн, ни одной стране для производства оружия столько не нужно. Вот и встал вопрос, что с ним делать дальше?
Оставить просто так где-нибудь в хранилище весьма дорогое удовольствие.
Как известно, плутоний в природе не встречается, его получают искусственно из урана-238 при облучении последнего нейтронами в атомном реакторе:
92U238 + 0n1 -1e0 + 93Pu239.
У плутония обнаружено 14 изотопов с массовыми числами от 232 до 246; наиболее распространен изотоп 239Pu.
Плутоний, выделяемый из отработанного топлива АЭС, содержит смесь высокоактивных изотопов. Под действием тепловых нейтронов делятся только Pu-239 и Pu-241, а быстрые нейтроны вызывают деление всех изотопов.
Период полураспада 239Pu равен 24000 годам, 241Pu – 75 лет, при этом образуется изотоп 241Am с сильным гамма-излучением. Ядовитость такова, что тысячная доля грамма вызывает летальный исход.
Академик Ю. Трутнев предложил хранить плутоний в подземных хранилищах, сооружаемых с помощью ядерных взрывов. Радиоактивные отходы вместе с горными породами остекловываются и не распространяются в окружающую среду.
Перспективным считается положение, что отработанное ядерное топливо (ОЯТ) – ценнейшее средство для атомной промышленности, подлежащее переработке и использованию по замкнутому циклу: уран – реактор – плутоний – переработка – реактор (Англия, Россия, Франция).
В 2000 году на российских АЭС скопилось около 74000 м3 жидких РАО суммарной активностью 0,22 105 Ки, около 93500 м3 твердых РАО активностью 0,77 103 Ки и около 9000 т отработавшего ядерного топлива активностью свыше 4 109 Ки. На многих АЭС хранилища РАО заполнены на 75% и оставшегося объема хватит лишь на 5-7 лет.
Ни одна АЭС не оснащена оборудованием для кондиционирования образующихся РАО. По мнению специалистов Минатома России реально в ближайшие 30-50 лет РАО будут храниться на территории АЭС, поэтому возникает необходимость создания там специальных долговременных хранилищ, приспособленных для последующего извлечения из них РАО для транспортирования их к месту окончательного захоронения.
Жидкие РАО Военно-морского флота хранятся в береговых и плавучих емкостях в регионах, где базируются корабли с атомными двигателями. Годовое поступление таких РАО около 1300 м3. Они перерабаты-
97
Р а з д е л 2 |
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И ЗАГРЯЗНЕНИЙ |
|
ОКРУЖАЮЩЕЙ СРЕДЫ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ |
ваются двумя техническими транспортными судами (один на Северном, другой на Тихоокеанском флотах).
Кроме того, в связи с интенсификацией применения ионизирующего излучения в хозяйственной деятельности человека, с каждым годом возрастает объем отработанных радиоактивных источников, поступающих с предприятий и учреждений, использующих в своей работе радиоизотопы. Большая часть таких предприятий находится в Москве (около 1000), областных и республиканских центрах.
Эта категория РАО утилизируется через централизованную систему территориальных спецкомбинатов «Радон» Российской Федерации, которые осуществляют прием, транспортировку, переработку и захоронение отработанных источников ионизирующего излучения. В ведении Департамента жилищно-коммунального хозяйства Минстроя РФ находятся 16 спецкомбинатов «Радон»: Ленинградский, Нижегородский, Самарский, Саратовский, Волгоградский, Ростовский, Казанский, Башкирский, Челябинский, Екатеринбургский, Новосибирский, Иркутский, Хабаровский, Приморский, Мурманский, Красноярский. Семнадцатый спецкомбинат, Московский (расположен возле г. Сергиев Посад), подчиняется Правительству г. Москвы.
Каждое предприятие «Радон» имеет специально оборудованные
пункты захоронения радиоактивных отходов (ПЗРО).
Для захоронения отработавших источников ионизирующего излучения используются инженерные приповерхностные хранилища колодезного типа. В каждом предприятии «Радон» налажена нормальная эксплуатация хранилищ, учет захороненных отходов, постоянный радиационный контроль и мониторинг за радиоэкологическим состоянием окружающей среды. На основе результатов контроля радиоэкологической обстановки в районе размещения ПЗРО периодически составляется радиоэкологический паспорт предприятия, который утверждается кон- трольно-надзорными органами.
Спецкомбинаты «Радон» спроектированы в 70-х годах XX века в соответствии с требованиями устаревших ныне норм радиационной безопасности.
2.6. ЗАЩИТА ОТ РАДИАЦИОННОГО ИЗЛУЧЕНИЯ
При проведении контроля степени облучения сельскохозяйственных животных необходимо определять дозы внешнего облучения. Это можно делать с помощью дозиметрических приборов, но дозу можно
98

2.6. Защита от радиационного излучения
определять и путем вычисления. В основе расчетных методов определения доз облучения лежат закономерности взаимодействия ионизирующих излучений с веществом. Вычисление доз облучения при внешнем гамма-облучении
Доза облучения прямо пропорциональна мощности дозы облучения и времени его воздействия:
D = P t,
где D – доза облучения;
P – мощность дозы облучения; t – время облучения.
Доза облучения от внешних точечных источников прямо пропорциональна мощности дозы облучения и обратно пропорциональна квадрату расстояния до него:
D= P t / R2,
где R – расстояние до источника излучения, см; D – доза облучения, Р;
P – мощность дозы излучения, Р/ч; T – время облучения, часы.
Существует взаимосвязь между активностью (А) радиоактивных веществ и мощностью дозы излучения, создаваемой их гаммаизлучением. Поэтому в формуле мощность дозы излучения (Р) можно заменить выражением (P = Kγ A) и формула примет вид:
D = (Kγ A t) / R2,
где D – доза облучения, Р;
Kγ – гамма-постоянная данного радиоизотопа (P см2 / ч мКи); A – активность данного радиоизотопа, мКи;
t – время облучения, часы;
R – расстояние до источника излучения, см.
Доза облучения может быть уменьшена с помощью поглощения излучения материалами защитных экранов. Значение этого коэффициента зависит от вида излучения, его энергии, материала экрана и толщины. Для гамма-излучения его можно рассчитать по следующей формуле:
Kосл. = 2 h / dпол.,
где Косл. – коэффициент ослабления излучения, (см. таблицу 28); h – толщина защитного слоя материала, см;
dпол. – слой половинного ослабления материала, см, т.е. такая толщина слоя материала, которая ослабляет интенсивность излучения в 2 раза.
99
Р а з д е л 2 |
ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ И ЗАГРЯЗНЕНИЙ |
|
|
ОКРУЖАЮЩЕЙ СРЕДЫ РАДИОАКТИВНЫМИ ВЕЩЕСТВАМИ |
|
Таблица 28 – Средние значения коэффициента ослабления дозы радиации (Косл.) |
||
|
укрытиями и транспортом |
|
|
|
|
Наименование укрытий и транспортных средств |
Косл. |
|
|
|
|
Открытое расположение на местности |
1 |
|
Открытые щели |
|
3 |
Производственные одноэтажные здания (цех) |
7 |
|
(коровник, свинарник, кирпичный без перекрытия) |
||
Коровник, свинарник кирпичный с ж/б перекрытием |
12,5 |
|
|
|
|
|
Жилые каменные дома |
|
|
|
|
Одноэтажные |
|
10 |
Подвал одноэтажного каменного дома |
40 |
|
Двухэтажные |
|
15 |
Подвал двухэтажного каменного дома |
100 |
|
|
|
|
|
Жилые деревянные дома |
|
|
|
|
Одноэтажные |
|
2 |
Подвал одноэтажного деревянного дома |
7 |
|
Погреб |
|
20 |
|
|
|
Защиту от облучения можно проводить следующими методами:
1.Защита временем. Следует находиться в зоне облучения минимальное время.
2.Защита расстоянием. Следует находиться от источника излучения на максимальном расстоянии.
3.Защита экранами. Следует использовать защитные средства из различных материалов (орг. стекло, дерево, кирпич, бетон, свинец, резина).
2.6.1.Принципы нормирования в области радиационной безопасности
Проблема защиты населения от действия ионизирующих излучений имеет глобальный характер, а потому соответствующие научноисследовательские и организационные мероприятия разрабатываются международными организациями, рекомендации которых используются отдельными странами при составлении собственных национальных регламентов.
100