- •Федеральное агентство по образованию
- •Оглавление
- •Глава 5. Моделирование вычислительных и операционных систем 289
- •Глава 6. Основы моделирования процессов 305
- •Глава 7. Задания для самостоятельной работы 311
- •Глава 8. Проектирование имитационных моделей 335
- •Глава 9. Технология имитационного моделирования 361
- •Глава 10. Примеры принятия решений с помощью имитационного моделирования 433
- •Глава 11. Задания для имитационных проектов 451
- •Предисловие
- •Введение
- •Глава 1. Модели массового обслуживания
- •1.1. Системы массового обслуживания и их характеристики
- •1.2. Системы с одним устройством обслуживания
- •1.3. Основы дискретно-событийного моделирования смо
- •1.4. Многоканальные системы массового обслуживания
- •Глава 2. Вероятностные сети систем массового обслуживания
- •2.1. Общие сведения о сетях
- •2.2. Операционный анализ вероятностных сетей
- •2.3. Операционные зависимости
- •2.4. Анализ узких мест в сети
- •Глава 3. Вероятностное моделирование
- •3.1. Метод статистических испытаний
- •3.2. Моделирование дискретных случайных величин
- •3.3. Моделирование непрерывных случайных величин
- •3.4. Сбор статистических данных для получения оценок характеристик случайных величин
- •Для оценки дисперсии случайной величины ξ используют формулу
- •3.5. Определение количества реализаций при моделировании случайных величин
- •По формулам (3.18-3.20) находим
- •Задачи для самостоятельной работы
- •Задача 6
- •Глава 4. Система моделированияgpss
- •4.1. Объекты
- •4.2. Часы модельного времени
- •4.3. Типы операторов
- •4.4. Внесение транзактов в модель. БлокGenerate
- •Задание для самостоятельной работы:
- •4.5. Удаление транзактов из модели. БлокTerminate
- •4.6. Элементы, отображающие одноканальные обслуживающие устройства
- •4.7. Реализация задержки во времени. БлокAdvance
- •Задания для самостоятельной работы:
- •4.8. Сбор статистики об ожидании. Блоки queue, depart
- •4.9. Переход транзакта в блок, отличный от последующего. БлокTransfer
- •Задания для самостоятельной работы:
- •4.10. Моделирование многоканальных устройств
- •4.11. Примеры построенияGpss-моделей
- •Построение модели
- •4.12. Переменные
- •4.13. Определение функции вGpss
- •Пример 4.23
- •4.14. Стандартные числовые атрибуты, параметры транзактов. Блоки assign, mark, loop
- •4.15. Изменение приоритета транзактов. БлокPriority
- •4.16. Организация обслуживания с прерыванием. Блоки preempt и return
- •Задание для самостоятельной работы:
- •4.17. Сохраняемые величины
- •4.18. Проверка числовых выражений. Блок test
- •Пример 4.40
- •Задание для самостоятельной работы:
- •4.19. Определение и использование таблиц
- •Задания для самостоятельной работы:
- •4.20. Косвенная адресация
- •4.21. Обработка транзактов, принадлежащих одному семейству
- •4.22. Управление процессом моделирования в системеGpss
- •4.23. Списки пользователей
- •4.24. Блоки управления потоками транзактовLogic,gatelr,gatelSиGate
- •7 Testne p1,p2,asn2 ; Повторить, если адресат
- •4.25. Организация вывода временных рядов изGpss-модели
- •4.26. Краткая характеристика языкаPlus
- •4.27. Команды gpss World
- •4.28. Диалоговые возможностиGpssWorld
- •4.29. Отличия между gpss World и gpss/pc
- •Глава 5. Моделирование вычислительных и операционных систем
- •5.1. Операционные системы компьютеров
- •5.2. Сети и системы передачи данных
- •5.3. Проблемы моделирования компьютеров и сетей
- •Глава 6. Основы моделирования процессов
- •6.1. Производственные процессы
- •6.2. Распределительные процессы
- •6.3. Процессы обслуживания клиентов
- •6.4. Процессы управления разработками проектов
- •Глава 7. Задания для самостоятельной работы Задание 1. Моделирование разливной линии
- •Глава 8. Проектирование имитационных моделей с помощью интерактивной системы имитационного моделирования
- •8.1. Структура интерактивной системы имитационного моделирования
- •8.2. Построение концептуальной схемы модели
- •8.3. Параметрическая настройка модели
- •8.4. Генератор формул
- •8.5. Управление экспериментом
- •8.6. Запуск эксперимента и обработка результатов моделирования
- •8.7. Управление проектами и общей настройкой системы
- •8.8. Пример построения модели средствамиIss2000
- •Глава 9. Технология имитационногомоделирования
- •9.1. Имитационные проекты
- •9.2. Организация экспериментов
- •9.3. Проблемы организации имитационных экспериментов
- •9.4. Оценка точности результатов моделирования
- •9.5. Факторный план
- •9.6. Дисперсионный анализAnovAв планированииэкспериментов
- •9.7. Библиотечная процедураAnova
- •9.8. Технология проведение дисперсионного анализа в системеGpss World
- •9.9. Особенности планирования экспериментов
- •9.10. Нахождение экстремальных значений на поверхности отклика
- •9.11. Организация экспериментов вGpssWorld
- •9.12. Выбор наилучшего варианта структуры системы
- •Глава 10. Примеры принятия решений с помощью имитационного моделирования
- •10.1. Моделирование производственного участка
- •10.2. Моделирование технологического процесса ремонта и замены оборудования
- •Глава 11. Задания для имитационных проектов
- •Приложение Системные сча
- •Сча транзактов
- •Сча блоков:
- •Сча одноканальных устройств:
- •Сча очередей
- •Сча таблиц
- •Сча ячеек и матриц ячеек сохраняемых величин:
- •Сча вычислительных объектов
- •Сча списков и групп
- •Список литературы
1.2. Системы с одним устройством обслуживания
Рассмотрим одноканальную (с одним устройством обслуживания) СМО, показанную на рис. 1.2.

Если обозначить среднее время пребывания требований в очереди w и рассматривать СМО как очередь q, то, используя формулу Литтла, можно найти среднее количество требований в очереди:

Е


сли
обозначить среднее время обслуживания
в устройствех
и
рассматривать СМО как устройство S,
то, используя формулу Литтла можно найти
среднее количество требований в
устройстве:

В
сегда
имеет место уравнениеT
= w+x,
где
Т
- среднее
время пребывания требований в СМО с
одним устройством обслуживания.
Коэффициент загрузки p определяет, какую часть времени устройство было занято на протяжении всего времени наблюдения за СМО.
Для обозначения СМО используются три параметра для первых трех параметров: X/Y/Z, где X - распределение времени поступления; Y- распределение времени обслуживания; Z- число обслуживающих устройств.
В теории СМО некоторые аналитические решения были получены для систем вида D/D/1, М/М/1 и M/G/1. Для других значений параметров систем обслуживания аналитические решения не были получены, то есть эта проблема мотивирует использование моделирования.
Самая известная модель - это так называемая СМО типа М/М/1, где М - марковские процессы распределения времени поступления и обслуживания с одним устройством. Например, в системе М/М/1 время между двумя поступлениями в систему требований и время обслуживания имеют экспоненциальные распределения. Такая СМО иногда используется как модель для одного процессора компьютерной системы или как стандартное устройство ввода-вывода (например, магнитный диск). Система D/D/1 - детерминированная система, тогда как D/M/1 - смешанная. Если о системе мало известно, это обозначается как G/G/m, то есть система с произвольными распределениями и т устройствами.
Изучая любую систему, важно оценить характер ее рабочей нагрузки (например, при моделировании компьютерной системы важно знать: когда новые программы (задачи) поступают в систему; сколько времени нужно процессору для выполнения любой из них; как часто программа обращается к устройству ввода-вывода). Этот процесс можно отобразить графиком работы системы (графический метод моделирования), на котором показаны входы задач в систему, ресурсы к которым они обращаются, как долго задачи их используют и т.д.
Если описанный сценарий зафиксирован соответствующим графиком и часто возникает в моделируемой системе, то тогда он целиком отвечает выборке, которая получена методом измерений при наблюдении за работой компьютера. Тем не менее, моделирование при использовании такого описания рабочей нагрузки только воссоздает результаты работы этого специфического сценария. Этого недостаточно для выполнения системой других сценариев. Даже незначительное несоответствие заданному сценарию может привести к драматическим последствиям работы компьютера.
Часто рабочая нагрузка на систему определяется одним или несколькими распределениями вероятностей в отличие от заданных сценариев. Например, можно бросать монету каждые 15 мин на протяжении операции исследования системы, и если монета падает лицевой стороной, то новая задача поступает в систему в этот момент времени. Если монета падает обратной стороной, то никакая задача не поступает в систему. Это пример метода розыгрыша случайной величины (метод Монте-Карло), который используется для моделирования вероятностных систем.
В компьютерном моделировании «бросание монеты» можно генерировать методом случайных чисел. Если выявлены статистические закономерности и используются соответствующие распределения вероятностей для определения рабочей нагрузки на систему, а также применяются соответствующие статистические методы анализа результатов моделирования, то полученные результаты относятся к более широкому диапазону рабочих нагрузок, чем подход с использованием определенного сценария.
Введем коэффициент вариации С как отношение стандартного отклонения к среднему:

г
деσx
- среднеквадратичное отклонение для x.
Д
ля
экспоненциального закона распределенияС=
1,
поскольку х
и
σx
для этого закона равняется λ.
Для регулярного детерминированного
закона распределения С
= О
(σx
=0).
Для системы G/G/1 среднее количество требований определяется как

Используя результат Хинчина-Полячека, можно получить среднее время пребывания в одноканальной СМО по формуле

Основной результат (1.7) состоит в том, что среднее время пребывания требования в системе зависит только от математического ожидания и стандартного отклонения времени обслуживания. Таким образом, время ожидания определяется как

Обычно интересуются нормированным временем ожидания:

Таким образом, система с регулярным обслуживанием характеризуется средним временем ожидания вдвое меньшим, чем система с показательным обслуживанием. Это закономерно, поскольку время пребывания в системе и количество требований в ней пропорциональны дисперсии времени обслуживания.
