
- •А.М. Зубалий современные проблемы биологии
- •Содержание
- •Введение
- •Глава 1. Проблема создания достаточного продовольственного потенциала для растущей человеческой популяции.
- •Контрольные задания
- •Глава 2. Изучение сложных физиолого-генетических функций организма
- •2.1.3. Законы адаптации
- •2.1.4. Стадии процесса адаптации
- •2.2. Основы системной физиологии
- •Контрольные задания
- •Глава 3. Проблемы биологии и генетики развития организма
- •3.1. Основные закономерности и проблемы онтогенеза.
- •3.1.1. Основные периоды онтогенеза
- •3.1.2. Морфогенез
- •3.1.3. Клеточная дифференцировка и эмбриональные индукции
- •3.1.4. Соотношение онто- и филогенеза
- •Контрольные задания
- •Глава 4. Проблемы молекулярной биологии
- •4.1. Апоптоз клеток
- •4.1.1. История исследования явления апоптоза
- •4.1.2. Происхождение и эволюция апоптоза
- •Апоптоз у прокариот
- •Апоптоз у одноклеточных эукариот
- •Апоптоз у многоклеточных эукариот
- •4.1.3. Фазы апоптоза
- •Сигнальная фаза
- •Рецептор-зависимый сигнальный путь
- •Митохондриальный сигнальный путь
- •Другие пути индукции апоптоза
- •Эффекторная фаза
- •Каспазный каскад
- •Дополнительные эффекторы апоптоза
- •Деградационная фаза
- •Биохимические изменения при деградации клеток
- •4.1.4. Регуляция апоптоза Семейство белков Bcl-2
- •Ингибиторы белков апоптоза
- •Альтернативные пути передачи сигнала от рецепторов смерти
- •Белок p53
- •4.1.5. Роль апоптоза в многоклеточном организме Клеточный гомеостаз и морфогенез
- •Роль апоптоза в иммунных процессах
- •Роль апоптоза в процессах старения
- •4.1.6. Патологии, обусловленные нарушениями апоптоза
- •Патология, связанная с ослаблением апоптоза
- •Патология, связанная с усилением апоптоза
- •4.2. Использование молекулярно-генетических маркеров в биологических исследованиях
- •Проведение пцр
- •Компоненты реакции
- •Праймеры
- •Амплификатор
- •Разновидности пцр
- •Применение пцр
- •4.3. Межклеточные и внутриклеточные взаимодействия
- •4.3.1. Первичные посредники
- •4.3.2. Вторичные посредники
- •Глава 5. Генные болезни
- •5.1. Причины генных патологий
- •5.2. Классификация генных болезней
- •Болезни аминокислотного обмена
- •Нарушения обмена углеводов
- •5.3.1. Определение кариотипа
- •Классический и спектральный кариотипы
- •5.3.2. Анализ кариотипов
- •5.3.3. Хромосомные болезни
- •Контрольные задания
- •Заключение
- •Контрольные вопросы по курсу «современные проблемы биологии»
- •Словарь терминов
- •Библиографический список
- •Зубалий Анастасия Михайловна
Митохондриальный сигнальный путь
Митохондриальный сигнальный путь апоптоза реализуется в результате выхода апоптогенных белков из межмембранного пространства митохондрий в цитоплазму клетки. Высвобождение апоптогенных белков, предположительно, может осуществляться двумя путями: за счёт разрыва митохондриальной мембраны или же путём открытия высокопроницаемых каналов на внешней мембране митохондрий.
Разрыв внешней мембраны митохондрий объясняется увеличением объема митохондриального матрикса. Данный процесс связывают с раскрытием пор митохондриальной мембраны, приводящим к снижению мембранного потенциала и высокоамплитудному набуханию митохондрий вследствие осмотического дисбаланса. Поры диаметром 2,6-2,9 нм способны пропускать низкомолекулярные вещества массой до 1,5кДа. Раскрытие пор стимулируют следующие факторы: неорганический фосфат; каспазы; SH-реагенты; истощение клеток восстановленным глутатионом; образованиеактивных форм кислорода; разобщение окислительного фосфорилирования протонофорными соединениями; увеличение содержания Ca2+ в цитоплазме; воздействие церамида; истощение митохондриального пула АТФ и др.
В качестве альтернативного пути выхода апоптогенных белков из межмембранного пространства митохондрий рассматривается вариант образования белкового канала во внешней митохондриальной мембране. Так или иначе, в цитоплазму высвобождаются: цитохром c — белок с молекулярной массой 15 кДа; прокаспазы -2, -3 и -9; AIF (от англ. apoptosis inducing factor — «фактор индуцирующий апоптоз») — флавопротеин с молекулярной массой 57 кДа.
Цитохром c в цитоплазме клетки участвует в формировании апоптосомы вместе с белком Apaf-1 (от англ. apoptosis protease activating factor-1 — «фактор активации протеаз апоптоза»). Предварительно, Apaf-1 претерпевает конформационные изменения в результате реакции, протекающей с затратой энергии АТФ. Предполагается, что трансформированный Apaf-1 приобретает способность связывать цитохром c. К тому же открывается доступ CARD-домена Apaf-1 для прокаспазы-9. В итоге происходит олигомеризация не менее 8 субъединиц трансформированного белка Apaf-1 с участием цитохрома c и прокаспазы-9. Так образуется апоптосома, активирующая каспазу-9. Зрелая каспаза-9 связывает и активирует прокаспазу-3 с образованием эффекторной каспазы-3. Высвобождающийся из межмембранного пространства митохондрий флавопротеин AIF является эффектором апоптоза, действующим независимо от каспаз.
Другие пути индукции апоптоза
Стоит отметить, что реализация апоптоза может происходить в результате комбинированного действия двух основных сигнальных путей — рецептор-зависимого и митохондриального. Помимо этого, существует ряд менее распространённых механизмов инициации апоптоза. Например, за счёт активации прокаспазы-12, локализованной в эндоплазматическом ретикулуме. Высвобождение и активация прокаспазы-12 при этом обусловлены нарушениями внутриклеточного гомеостаза ионов кальция (Ca2+). Активация апоптоза также может быть связана с нарушением адгезии клеток.
В качестве ещё одного фактора индукции апоптоза рассматривается атака инфицированных клеток цитотоксическими Т-лимфоцитами, которые, помимо активации Fas-рецептора, способны секретировать перфорин вблизи мембраны заражённой клетки. Перфорин, полимеризуясь, образует трансмембранные каналы, через которые внутрь клетки поступают лимфотоксин-альфа и смесь сериновых протеаз (гранзимов). Далее гранзим B активирует каспазу-3 и запускается каспазный каскад.
Возможна инициация клеточной смерти при высвобождении лизосомальных протеаз — катепсинов. К примеру, каспаза-8 вызывает выход из лизосом активного катепсина B, который затем расщепляет регуляторный белок Bid. В результате образуется активный белок t-Bid, активирующий в свою очередь проапоптозный белок Bax.