Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Битумы. Пенетрация

.pdf
Скачиваний:
134
Добавлен:
24.03.2015
Размер:
911.83 Кб
Скачать

Федеральное агентство по образованию Московская государственная академия тонкой химической

технологии им. М.В. Ломоносова

Кафедра технологии нефтехимического синтеза и искусственного жидкого топлива им. А.Н. Башкирова

Лихтерова Н.М., Николаев А.И.

БИТУМЫ.

СВОЙСТВА И МЕТОДЫ ОПРЕДЕЛЕНИЯ ИХ ХАРАКТЕРИСТИК.

Методические указания для выполнения лабораторных работ

Москва, 2008

2

ББК 35.514я73 УДК 541,127:665.642

Лихтерова Н.М., Николаев А.И.

БИТУМЫ. СВОЙСТВА И МЕТОДЫ ОПРЕДЕЛЕНИЯ ИХ ХАРАКТЕРИСТИК.

Методические указания для выполнения лабораторных работ М, МИТХТ им. М.В. Ломоносова, 2008, 35с.

Пособие содержит раздел посвященный свойствам битумов, а также раздел, в котором представлены методы определения физикомеханических характеристик, определяющих эти свойства.

Предназначено для студентов 4 - 6 курсов, обучающихся по направлениям высшей инженерной школы 072000 «Стандартизация и сертификация», 250400 - «Химическая технология природных энергоносителей и углеродных материалов», а также по направлению магистратуры 550808 - «Химическая технология природных энергоносителей и углеродных материалов».

Рецензент: с.н.с. ЦКП МИТХТ им. М.В. Ломоносова, к.х.н. Городский С.Н.

© МИТХТ им. М.В. Ломоносова, 2008

3

Содержание.

 

1. Нефтяные битумы

4

1.1. Свойства битумов

4

1.2. Сырье для производства нефтяных битумов

9

2. Современные отечественные нефтяные битумы

12

3. Экспериментальные методы определения физико-

17

химических характеристик нефтяных битумов

 

3.1. Метод определения глубины проникновения иглы

17

согласно ГОСТ 11501-78

 

3.2. Метод определения температуры размягчения по

19

кольцу и шару согласно ГОСТ 11506-73

 

3.3. Метод определения температуры хрупкости по Фраасу

22

согласно ГОСТ 11507-78

 

3.4. Метод определения изменения массы после прогрева

25

согласно ГОСТ 18180-72

 

3.5. Метод определения растяжимости согласно ГОСТ 111505-75

27

4. Расчетные методы определения физико-механических

30

характеристик битумов

 

4

1. Нефтяные битумы.

Природные битумы известны человечеству уже много тысяч лет. Помимо природного происхождения битумы могут быть получены в результате переработки нефти, сланцев, торфа и углей. В XX столетии с развитием нефтедобывающей и нефтеперерабатывающей промышленности возросло производство и потребление битумов получаемых на основе нефтяного сырья. Область их применения достаточно широка. Так они используются в качестве строительных и гидроизолирующих материалов при строительстве фундаментов зданий и кровель (изоляционные и кровельные битумы), связующего вещества при прокладке дорог (дорожные битумы) и т.д. Следует отметить, что для успешного применения битумов они должны обладать определенным набором свойств.

1.1. Свойства битумов. 1.1.1. Вязкость.

При высоких температурах битумы приближаются по своим свойствам к жидкости, а при низких приобретают свойства твердого тела. Для дорожных битумов вязкость как показатель эксплуатационных свойств важна в двух случаях. В период смешения битумов с минеральными материалами они должны иметь достаточно низкую вязкость, чтобы обеспечить легкость и эффективность смешения и укладки смеси в покрытие. В процессе работы дорожного покрытия битум должен обладать очень высокой вязкостью при повышенных температурах, обеспечивающей ему необходимую прочность. Поэтому вязкость является одной из основных характеристик структурномеханических свойств битумов. Вязкость битумов изменяется в широких пределах в зависимости от химического состава и температуры. Значительное влияние на вязкость битума оказывает количественное соотношение асфальтенов и масел. С увеличением количества асфальтенов вязкость повышается. Для повышения долговечности дорожного покрытия важно, чтобы вязкость битума в меньшей степени изменялась в интервале температур, при которых эксплуатируется покрытие.

Маркировочным признаком вязких дорожных битумов, косвенно определяющим их вязкость, служит показатель глубины проникания иглы (пенетрации) в битум при температуре 25 и 0°С. Чем больше содержание асфальтенов в битуме, тем меньше глубина проникновения иглы. Глубина проникания иглы косвенно характеризует такие эксплуатационные качества битума, как твердость, прочность и теплостойкость.

Маркировочным признаком жидких дорожных битумов служит показатель условной вязкости, характеризуемый временем истечения в

5

секундах 50 мл битума через отверстие 5 мм при температуре 60°С и определяемый с помощью стандартного вискозиметра.

1.1.2. Температура размягчения.

Температуру, при которой битумы из относительно твердого состояния переходят в жидкое, условно называют температурой размягчения. Температура размягчения является также условным показателем вязкости битумов при более высоких температурах. Более вязкие битумы имеют более высокую температуру размягчения. При одинаковой глубине проникания иглы битумы с более высокой температурой размягчения являются и более теплостойкими. Битумы с низкой температурой размягчения обладают низкой прочностью при повышенной температуре.

Температура размягчения зависит от состава битума. Она тем выше, чем больше отношение содержания асфальтенов к содержанию жидких компонентов битума - смол и масел.

Для качества битума большое значение имеет соотношение между показателем глубины проникания иглы и температурой размягчения. Более ценными являются битумы, у которых при данной температуре размягчения более высокий показатель глубины проникания иглы. Это означает относительно меньшую восприимчивость битумов к изменению температуры.

Таким образом, вязкость битумов оказывает существенное влияние на свойства асфальтобетонной смеси в процессе перемешивания, укладки и уплотнения, а также на строительно-технические свойства асфальтобетона. Большая вязкость битумов увеличивает прочность, водостойкость и теплостойкость асфальтобетона, но битумы с повышенной вязкостью хуже обволакивают поверхность минеральных материалов, поэтому битумы следует применять с определенной вязкостью и при определенных температурах нагрева с учетом климатических условий района строительства, вида, марки и типа асфальтобетона, категории автомобильной дороги.

1.1.3. Индекс пенетрации.

Это показатель служит для эксплуатационной оценки битумов и связывает показатели температуры размягчения и глубины проникания иглы. Индекс пенетрации (И.П.) выражают в виде отвлеченного числа, определяемого по формуле:

И.П. = 1 +3050А 10

А= 2,9031 lg П

Т25

где П - глубина проникания иглы при 25°С, 0,1 мм;

6

Т - температура размягчения, °С.

Индекс пенепрации характеризует колойдные свойства битумов, их пластические свойства и зависимость их от температуры.

По индексу пенитрации битумы разделяют на три группы:

1. битумы и ИП 2 (золь), не имеющие дисперсной фазы или содержащие сильно пентизированные асфальтены (битумы из крекингостатков или пеки из каменноугольной смолы). Эластичность таких битумов (дуктильность при 25°С) близка к нулю;

2.битумы и ИП от -2 до +2 (золь-гель) имеются элементы для образования пространственного коагуляциононого каркаса с прослойками дисперсной среды, препятствующей старению битума (битумы для дорожного строительства);

3.битумы с ИП 2 являющимися гелями и склонны к старению. Требования современного ГОСТа 22245-90 для вязких дорожных

битумов предусматривает изменение ИП от -1 до +1.

1.1.4. Растяжимость.

Растяжимость битумов оценивается по их способности растягиваться в нить определенной длины под влиянием нагрузки.

Растяжимость битумов зависит от их температуры, группового состава и структуры. Битумы с большим содержанием смол при оптимальном содержании масел и асфальтенов имеют большую пластичность. С повышением температуры растяжимость битумов увеличивается. Битумы, имеющие большую глубину проникания иглы, имеют и большую растяжимость. С увеличением содержания в битумах твердых парафинов растяжимость битумов уменьшается.

Растяжимость битумов косвенно характеризует сцепление их с минеральными материалами. С повышением растяжимости сцепление битумов с минеральными материалами повышается, что объясняется значительным содержанием в битумах ароматических соединений и смол. Растяжимость битумов при 25°С характеризует также степень структурированности битума и тип его дисперсной структуры.

С растяжимостью битума при низких температурах тесно связано одно из важнейших свойств асфальтобетона - его деформативная способность при низких температурах эксплуатации. Недостаточная деформативная способность приводит к быстрому разрушению асфальтобетона в покрытиях появляются трещины. Повышение растяжимости битумов при отрицательных температурах - важнейшая задача исследователей и инженеров.

1.1.5. Температура хрупкости.

Низшая температура, при которой битум в данных условиях испытания теряет вязкопластические свойства и становится хрупким, называется температурой хрупкости.

7

Температура хрупкости является одним из важнейших показателей качества дорожных, кровельных и ряда других битумов, характеризующих работу битумосодержащих материалов при низких температурах. Желательна возможно более низкая температура хрупкости битума, так как такой битум имеет лучшие пластические свойства, а дорожное или кровельное покрытия лучше работают в условиях сурового климата и холодной погоды. Покрытия из битума с высокой температурой хрупкости при низких температурах выкрашиваются, дают трещины и быстро разрушаются.

Наличие парафино-нафтеновых и моноциклических ароматических соединений обуславливает низкую температуру хрупкости, битумов.

Величину температурного интервала между температурой размягчения и температурой хрупкости называют интервалом пластичности. Битумы с широким интервалом пластичности (более 70°С) обладают повышенной деформационной способностью, стойкостью к образованию трещин при низких температурах и стойкостью против сдвига три повышенных летних температурах. Чем больше величина температурного интервала, в котором битум находится в упруговязком состоянии, тем лучше его эксплуатационные свойства. Такой битум обычно проявляет также хорошее сцепление с поверхностью минерального материала.

1.1.6. Сцепление с поверхностью минеральных материалов

(адгезия).

Способность битумов к прочному сцеплению с поверхностью минеральных частиц предотвращает выкрашивание минерального материала из монолита дорожного покрытия и обеспечивает его морозо- и водостойкость.

Сцепление битумов с минеральным материалом зависит от свойств битумов и минеральных материалов, а также от внешних условий, в которых проводится смешение и работает дорожное покрытие.

Сцепление битумов определяется полярностью молекул компонентов смеси. В битуме значительной полярностью обладают молекулы асфальтенов и асфальтотеновых кислот и их ангидридов.

Битумы хорошо сцепляются с поверхностью минеральных материалов карбонатных и основных горных пород и плохо - с поверхностью минеральных материалов кислых (содержание SiO2 более 65%) горных пород (гранит).

Сцепление битума повышается с увеличением температуры, а наличие влаги на поверхности минерального материала резко снижает сцепление битума.

1.1.7. Содержание водорастворимых соединений.

8

К водорастворимым соединениям относятся соединения, извлекаемые водой в виде раствора или выделяющиеся из битума в виде эмульсий. Как правило, это низкомолекулярные соединения (кислоты или щелочи) и некоторые соли органических кислот.

Наличие в битуме водорастворимых соединений приводит к тому, что при контакте битума с водой происходит экстракция этих веществ. Процесс вымывания отдельных компонентов из состава, битумного вяжущего способствует образованию микротрещин (пустот) в дорожном покрытии, что в свою очередь в зимнее время приводит к его разрушению за счет расклинивающего эффекта воды в кристаллическом состоянии. Минеральный материал при этом может обнажаться, а затем выкрашиваться из дорожного покрытия.

Содержание водорастворимых соединений определяется как отношение количества битумных компонентов, попавших в водную вытяжку после кипячения, к первоначальной навеске испытуемою битума.

1.1.8. Старение.

Старением принято называть совокупность необратимых изменений химического состава, структуры и свойств битумов, происходящих при воздействии на битумы различных факторов - температуры, света, воздуха, воды, минеральных материалов и механических нагрузок.

В результате старения битумы повышают свою вязкость и хрупкость. Увеличение вязкости происходит за счет изменения группового состава битумов - смолы переходят в асфальтены, асфальтены частично превращаются в карбены и карбоиды, снижается содержание ароматических соединений. При длительном хранении битума на открытом воздухе на его поверхности в результате окисления появляются трещины, шелушение, ухудшается прилипаемость к минеральным материалам. Такие изменения физических свойств и химического состава битумов связаны преимущественно с происходящими в битумах процессами окисления и полимеризации и в меньшей степени зависят от испарения легких фракций.

Характеристикой стойкости битумов против старения (стабильности) в условиях продолжительного хранения при повышенных температурах является повышение температуры размягчения после прогрева.

Битумы с большей начальной вязкостью подвержены меньшим изменениям от действия атмосферных факторов, чем битумы с меньшей начальной вязкостью. Интенсивность старения возрастает у битумов при их нагреве в присутствии минеральных материалов, выполняющих роль катализаторов. Также на интенсивность старения битума в асфальтобетонном покрытии существенное влияние оказывает объем и структура пор асфальтобетона. Большой объем открытых

9 (сообщающихся) пор, способствующих усиленной циркуляции воздуха и воды, интенсифицирует процессы старения битума. В плотных асфальтобетонах, характеризующихся замкнутыми порами, старение битума менее интенсивно. Интенсивность старения битумов тем больше, чем тоньше слой асфальтобетона.

1.1.9. Пожаробезопасность битумов.

При нагреве битумов выделяются газообразные продукты, которые в присутствии открытого пламени могут вспыхнуть. Для предохранения битумов от возгорания при их изготовлении и применении необходимо учитывать температуры вспышки и самовоспламенения.

Температурой вспышки называют температуру, при которой газообразные продукты нагреваемого битума образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени.

Температурой самовоспламенения называют температуру газообразных продуктов, выделяющихся из нагретого битума, которые при смешивании с воздухом после зажигания горят не менее 5 с.

На практике по величине температуры вспышки и самовоспламенения судят о пожароопасности и ожидаемых потерях от испарения битумов.

1.2. Сырье для производства нефтяных битумов.

Основным сырьем для производства битумов являются остатки вакуумной перегонки нефти - гудроны, а также побочные продукты масляного производства - асфальты деасфальтизации, то есть асфальтосмолистые вещества, осаждаемые из гудронов, как правило, жидким пропаном. Их называют также осажденными битумами. В некоторых случаях для производства битумов применяют крекинг-остатки установки термического крекинга.

Следует отметить, что для получения качественных битумов, обладающих высокой термоустойчивостью, хорошими связующими свойствами, целесообразно применять гудроны тяжелых нефтей нафтеноароматического основания, содержащие много асфальтосмолистых веществ. Однако для производства битумов в широком масштабе приходится использовать нефти массовой добычи. Так, например, была изучена возможность получения битумов из нефтей, характеристики которых представлены в таблице 1, 22 месторождений Туркменистана.

10

Таблица 1 Состав нефтей месторождений Туркменистана.

Содержание,

 

 

 

 

 

 

 

 

 

 

Месторождения нефтей

 

 

 

 

 

 

 

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Котур - Тепе

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Челекен

 

Котур - Тепе

 

Комсомоль

 

 

 

 

Небиб -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Алигул

 

Зап. Челекен

 

 

Дагад-жик

 

Западное

 

Центральное

 

Восточное

 

Овал -Товал

 

Банкали

 

Барса-Гелмес

 

Западный

 

Централ ьный

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- парафина

 

12,9

11,7

 

0,8

8,1

 

6,3

 

9,0

 

8,0

 

13,4

 

5,0

4,2

 

1,2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- смол

 

9,0

8,2

 

13,2

13,1

 

12,7

 

8,8

 

11,1

 

11,3

 

10,6

11,0

 

14,6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- асфальтенов

 

0,789

0,39

 

0,71

1,35

 

1,08

 

0,90

 

1,10

 

1,22

 

1,01

0,58

 

0,87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- серы

 

0,16

0,20

 

0,25

0,15

 

0,18

 

0,17

 

0,23

 

0,19

 

0,17

0,22

 

0,15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Продолжение таблицы 1

 

 

 

 

 

 

 

 

 

Месторождения нефтей

 

 

 

 

 

 

Содержание,

 

 

 

 

 

 

 

 

 

 

 

 

 

%

 

 

 

 

Котур - Тепе

 

 

 

 

 

 

Окарем

 

 

 

 

 

 

 

Кум - Даг

 

Прибалханский

 

 

Гограньдаг -

 

 

 

 

Западный

 

Восточный

 

Клин

 

Бурунс-кая

 

 

Монжук лы

Боя-Даг

Камыш-лыджа

Окарем

 

Порсу

 

Карадаш ли

Кеймир

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- парафина

 

10,8

 

12,2

 

13,5

 

10,61

 

4,6

15,1

17,0

12,4

17,6

15,7

1,6

- смол

 

7,1

 

9,6

 

 

8,0

 

8,2

 

9,8

14,6

16,7

13,1

12,1

 

 

 

16,3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

0,99

 

0,76

 

0,90

 

0,40

 

-

-

4,9

1,75

 

-

 

-

 

-

асфальтенов

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- серы

 

0,17

 

0,17

 

0,17

 

0,28

0,15

0,25

0,29

0,17

 

-

 

0,05

0,38

Используя классификацию нефтей, разработанную институтом БашНИИНП (классификация 1), по содержанию в ней асфальтенов (А), смол (С) и парафинов (П) были получены результаты представленные в