
4. Следящая система управления — это система автоматического управления, в которой управляемая величина воспроизводит произвольно изменяющееся задающее воздействие.
Пример следящей системы — радиолокационная станция, в её задачи входит сопровождение цели с заранее неизвестным законом движения.
О динамических свойствах следящей системы можно судить по величине ошибки. Также сигнал ошибки в следящих системах является сигналом, в зависимости от величины и «характера» которого осуществляется управление объектом. Различают системы статические и астатические. Статические системы управляются значением ошибки: есть ошибка - есть управление в системе, больше величина ошибки - сильнее реакция системы. Так, если целью сопровождения радиолокационной станции является неподвижно висящий вертолёт, то станция, отработав ошибку, "замирает". Если цель-вертолёт начнёт движение, то появится ошибка и система "оживёт". Если траектория движения цели будет круговой с постоянной скоростью, на постоянной высоте с центром в точке, где находится радиолокационная станция, то ошибка (её "характер") будет постоянной. Системы способные автоматически выполнять свои функции при наличии ошибки постоянной величины называют астатическими.
Следящая система может быть реализована с любым фундаментальным принципом управления и отличается от аналогичной системы программного управления тем, что вместо датчика программы в ней будет размещено устройство слежения за изменениями внешних воздействий.
В следящих системах управляющее воздействие также является величиной переменной, но математическое описание его во времени не может быть установлено, так как источником сигнала служит внешнее явление, закон изменения которого заранее неизвестен.
Так как следящие системы предназначены для воспроизведения на выходе управляющего воздействия с возможно большей точностью, то ошибка, так же как и в случае систем программного регулирования, является той характеристикой, по которой можно судить о динамических свойствах следящей системы. Ошибка в следящих системах, как и в системах программного регулирования, является сигналом, в зависимости от величины которого осуществляется управление исполнительным двигателем.
Системы регулирования соотношения
Системы регулирования соотношения относятся к следящим системам. Так, исходная смесь и флегма должны поступать в ректификационную колонну в определенном соотношении. При этом ведущей технологической величиной является расход смеси, а ведомой — расход флегмы. Это реализуется с помощью регулятора соотношения, который воздействует на расход флегмы. Аналогично регулируют соотношения следующих расходов: топливо и воздух в процессах горения; два вещества, подаваемые в химический реактор; сырье и пар, подаваемые в трубчатые печи пиролиза углеводородов, и др.
Иногда используют схемы регулирования, в которых предусмотрено изменение соотношения двух расходов в зависимости от текущего значения третьей технологической величины. Например, соотношение расходов топливного газа и воздуха, подаваемых в трубчатую печь, корректируют по содержанию кислорода в дымовых газах.
Тепловые процессы играют значительную роль в химической технологии. Химические реакции веществ, а также их физические превращения, как правило, сопровождаются тепловыми явлениями. Тепловые эффекты часто составляют основу технологических процессов. В связи с этим, вопросы автоматизации теплообменников, трубчатых печей, выпарных аппаратов и других объектов химической технологии, связанных с передачей тепла, играют существенную роль.
5. 6.
7. 8.
9.
10.
11. 12.
13.
14.
14.
15.
16.
17.
17. 18.
19. 20.