- •Методические материалы для поступления в магистратуру бт
- •Http://medbiol.Ru/medbiol/botanica/00197751.Htm Строение эукариотической клетки
- •Функции белков в организме
- •Классификация белков
- •Уровни структурной организации белков
- •Третичная структура
- •Четвертичная структура
- •Пептидная связь – основные параметры и особенности
- •Свойства пептидной связи
- •Физические свойства
- •Общие химические свойства
- •Классификация аминокислот
- •Классификация ферментов
- •Активный центр ферментов
- •Кофакторы ферментов
- •Конкурентное ингибирование
- •Неконкурентное ингибирование
- •Аллостерическое ингибирование
- •Строение углеводов
- •В таблице приведена структура главных азотистых оснований:
- •Структура рибонуклеиновых кислот (рнк)
- •Основные типы рнк
- •Методы определения первичной и вторичной структуры нуклеиновых кислот
- •Терминация
- •Обратная транскрипция
- •Взаимосвязь между обменами белков, липидов и углеводов
- •Http://med-books.Info/gennyie-bolezni-nasledstvennyie/mutagenyi-mutagenez.Html
- •Применение в научных исследованиях
- •Клетки иммунной системы
- •Типы иммунного ответа
- •Классификация вакцин
В таблице приведена структура главных азотистых оснований:
Азотистое основание |
Аденин |
Гуанин |
Тимин |
Цитозин |
Урацил |
Нуклеозид |
Аденозин A |
Гуанозин G |
Тимидин T |
Цитидин C |
Уридин U |
https://ru.wikipedia.org/wiki/Азотистые основания
Структура дезоксирибонуклеиновой кислоты (ДНК)
Первичная структура ДНК – порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинукпеотидной цепи.
Каждая фосфатная группа в полинукпеотидной цепи, за исключением фосфорного остатка на 5'-конце молекулы, участвует в образовании двух эфирных связей с участием 3'- и 5'-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3', 5'-фосфодиэфирной.
Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа, а на 3'-конце цепи - свободная ОН-группа. Эти концы называют 5'- и 3'-концами. Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращённо записывают с помощью однобуквенного кода, например -A-G-C-T-T-A-C-A- от 5'- к 3'-концу.
Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны, т.е. если одна из них ориентирована в направлении 3'→5', то вторая - в направлении 5'→3'.
Двойная спираль ДНК. Молекулы ДНК состоят из двух антипараллельных цепей с комплементарной последовательностью нукпеотидов. Цепи закручены относительно друг друга в правозакрученную спираль так, что на один виток приходится примерно 10 пар нуклеотидов.
Молекулы ДНК расположены 5'-конец одной цепи и 3'-конец другой цепи.
Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов – снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи). При таком сочетании каждая пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплементарна последовательности нуклеотидов второй цепи. Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.
Третичная структура ДНК (суперспирализация ДНК)
Каждая молекула ДНК упакована в отдельную хромосому. В диплоидных клетках человека содержится 46 хромосом. Общая длина ДНК всех хромосом клетки составляет 1,74 м, но она упакована в ядре, диаметр которого в миллионы раз меньше. Чтобы расположить ДНК в ядре клетки, должна быть сформирована очень компактная структура. Компактизация и суперспирализация ДНК осуществляются с помощью разнообразных белков, взаимодействующих с определёнными последовательностями в структуре ДНК. Все связывающиеся с ДНК эукариотов белки можно разделить на 2 группы: гисгоновые и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином.