
- •Линии второго порядка, заданные каноническими уравнениями.
- •Содержание
- •Взять в библиотеке методичку:
- •1. Эллипс и его каноническое уравнение
- •Таким образом, мы доказали, что координаты любой точки M (x; y)
- •Таким образом, мы доказали, что координаты любой точки M (x; y)
- •Если числа x и y удовлетворяют уравнению (2), то точка M (x; y)
- •Если числа x и y удовлетворяют уравнению (2), то точка M (x; y)
- •Докажем это утверждение
- •Докажем это утверждение
- •Докажем это утверждение
- •Докажем это утверждение
- •Докажем это утверждение
- •Докажем это утверждение
- •из уравнения
- •из уравнен я
- •из уравнения
- •Таким образом, уравнение (2) есть уравнение эллипса, т.к. доказано, что координаты любой точки
- •2. Исследование формы эллипса.
- •2. Исследование формы эллипса.
- •2. Исследование формы эллипса.
- •из уравнения
- •из уравнения
- •Точки пересечения эллипса с осями координат называются вершинами эллипса ( a;0 ) и
- •Точки пересечения эллипса с осями координат называются вершинами эллипса ( a;0 ) и
- •Точки пересечения эллипса с осями координат называются вершинами эллипса ( a;0 ) è
- •Точки пересечения эллипса с осями координат называются вершинами эллипса ( a;0 ) è
- •Отношение половины расстояния между фокусами эллипса (фокальное расстояние) к большей полуоси эллипса называется
- •Отношение половины расстояния между фокусами эллипса (фокальное расстояние) к большей полуоси эллипса называется
- •Отношение половины расстояния между фокусами эллипса (фокальное расстояние) к большей полуоси эллипса называется
- •3.Директрисы эллипса.
- •3.Директрисы эллипса.
- •Теорема:
- •Самостоятельно изучить вопросы по данной теме:
- •4. Гипербола и её
- •Мы доказали, что координаты любой точки гиперболы удовлетворяют уравнению
- •Докажем обратное: если координаты некоторой точки М(x,y) удовлетворяют уравнению (2), то для этой
- •Пусть точка M (x; y) удовлетворяет уравнению (2),
- •Пусть точка M (x; y) удовлетворяет уравнению (2),
- •Пусть точка M (x; y) удовлетворяет уравнению (2),
- •Так как b2 с2 a2 , значит
- •Так как b2 с2 a2 , значит
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Отрезки F1M и F2M назовем фокальными радиусами
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, получаем
- •Таким образом, уравнение (2) есть уравнение гиперболы, т.к. доказано, что координаты любой точки
- •5. Исследование формы гиперболы
- •5. Исследование формы
- •5. Исследование формы гиперболы
- •В силу того, что гипербола, заданная каноническим уравнением, симметрична относительно начала координат, расстояние
- •Так как гипербола, заданная каноническим уравнением, симметрична относительно оси Оy, то она имеет
- •Гипербола, у которой полуоси равны, называется равносторонней
- •6. Эксцентриситет и директрисы гиперболы
- •6. Эксцентриситет и директрисы гиперболы
- •6. Эксцентриситет и директрисы гиперболы
- •6. Эксцентриситет и директрисы гиперболы
- •Перепишем формулы для фокальных радиусов
- •Перепишем формулы для фокальных радиусов
- •Две прямые, перпендикулярные действительной оси гиперболы и отстоящие от центра гиперболы на расстояние
- •Для гиперболы, заданной каноническим
- •Для гиперболы, заданной каноническим
- •Теорема: Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы
- •Самостоятельно изучить вопросы по данной теме:
- •7. Парабола и её
- •7. Парабола и её
- •7. Парабола и её
- •Расстояние FD обозначим р (параметр параболы).
- •Расстояние FD обозначим р (параметр параболы).
- •Расстояние FD обозначим р (параметр параболы). тогда в выбранной системе координат фокус F
- •Расстояние FD обозначим р (параметр параболы). тогда в выбранной системе координат фокус F
- •Расстояние FD обозначим р (параметр параболы). тогда в выбранной системе координат фокус F
- •Каноническое уравнение параболы
- •Каноническое уравнение параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •8. Исследование формы параболы
- •Уравнение y2 2 px
- •Уравнение y2 2 px
- •Уравнение y2 2 px
- •Уравнение y2 2 px
- •Аналогичными рассуждениями устанавливаем, что каждое из уравнений
- •Самостоятельно изучить вопросы по данной теме:
- •9.Уравнение эллипса, параболы и гиперболы в полярных координатах.
- •Полярная система координат на плоскости.
- •r OM полярный радиус М
- •r OM полярный радиус М
- •r OM полярный радиус Мамплитуда
- •Введём ДПСК
- •Формулы (1) позволяют вычислить декартовые прямоугольные координаты х, у точки М по её
- •Формулы (1) позволяют вычислить декартовые прямоугольные координаты х, у точки М по её
- •Полярное уравнение эллипса, гиперболы и параболы
- •Полярное уравнение эллипса, гиперболы и параболы
- •Введем полярную систему координат, совмещая полюс с фокусом F (в случае гиперболы берем
- •Пусть D-основание перпендикуляра, опущенного из F на директрису, соответствующего этому фокусу. Полярную ось
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
- •Половина длины фокальной хорды (т. е. хорды, проходящей через фокус перпендикулярно к фокальной
из уравнения
|
x2 |
|
y2 |
1 следует, что |
||
|
a2 |
b2 |
||||
|
|
|
||||
|
x |
|
a, |
0 c a, т |
||
|
|
из уравнен я |
|
|
||||||||
|
x2 |
|
y2 |
1 |
следует, что |
|||||
|
a2 |
b2 |
||||||||
|
|
|
|
|
|
|||||
|
x |
|
a, |
|
0 c a, т |
|
|
|||
|
|
|
|
|
||||||
a cx |
0 |
и a |
cx |
0 |
||||||
|
|
|
|
a |
|
|
|
a |
|
из уравнения |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
x2 |
|
y2 |
1 следует, что |
|||||||||||||||||||
|
a2 |
b2 |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
x |
|
a, |
|
0 c a, |
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
a cx |
0 и |
a cx |
0 |
||||||||||||||||||||
|
|
|
|
a |
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|||||
Значит |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
F M |
|
a cx и |
|
|
F M |
|
|
|
a cx |
|||||||||||||
|
|
|
|
|
|||||||||||||||||||
|
1 |
|
|
|
|
|
a |
|
|
2 |
|
|
|
|
|
|
|
|
a |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
следовательно |
|
|
F1M |
|
|
|
F2M |
|
2a |
||||||||||||||
|
|
|
|
Таким образом, уравнение (2) есть уравнение эллипса, т.к. доказано, что координаты любой точки M (x; y) эллипса, т.е. любой точки, для которой выполняется выражение (1)
удовлетворяет уравнению (2) и обратно, если два числа x и y удовлетворяет уравнению (2), то точка M (x; y) удовлетворяет соотношению (1), т.е. лежит на эллипсе.

x2 |
|
y2 |
1 |
|
a2 |
b2 |
|||
|
|
каноническое уравнение эллипса

x2 |
|
y2 |
1 |
|
a2 |
b2 |
|||
|
|
каноническое уравнение эллипса
2. Исследование формы эллипса.
Так как координаты x и y входят в уравнение в четной степени, то если на эллипсе лежит любая точка M(x, y) ( т.е. координаты этой точки удовлетворяют уравнению(2)),
2. Исследование формы эллипса.
Так как координаты x и y входят в уравнение в четной степени, то если на эллипсе лежит любая точка M(x, y) ( т.е. координаты этой точки удовлетворяют уравнению(2)), то на этом эллипсе будут лежать точки M1(-x,y) и M2(x, -y), симметричные с точкой M(x, y) относительно осей Ox и Oy и точка M3(-x;-y), cимметричная относительно начала координат.
2. Исследование формы эллипса.
Так как координаты x и y входят в уравнение в четной степени, то если на эллипсе лежит любая точка M(x, y) ( т.е. координаты этой точки удовлетворяют уравнению(2)), то на этом эллипсе будут лежать точки M1(-x,y) и M2(x, -y), симметричные с точкой M(x, y) относительно осей Ox и Oy и точка M3(-x;-y), cимметричная относительно начала координат.
Следовательно, оси Ox и Oy являются осями симметрии, а начало координат – центром симметрии эллипса.

из уравнения |
x2 |
|
y2 |
1 |
|
a2 |
b2 |
||||
|
|
|
Следует, что для координат любой точки имеет место
x a и y b