
- •Министерство науки и образования российской федерации
- •Раздел 1. Применение математического анализа и алгебры
- •Тема 1.1. Математические методы в маркетинге 13
- •Тема 1.2. Балансовые модели 49
- •Раздел 2. Экономико-математические методы
- •Тема 2.1. Моделирование задач принятия решений 64
- •Тема 2.2. Линейное программирование 77
- •Тема 2.3. Задачи транспортного типа 105
- •Тема 2.4. Математические основы управления проектами 131
- •Тема 2.5. Математические методы логистики 163
- •Тема 2.6. Задачи массового обслуживания 177
- •Тема 2.7. Состязательные задачи 196
- •Тема 2.8. Динамическое программирование 236
- •Тема 2.9. Многокритериальная оптимизация 268
- •Введение
- •Раздел 1. Применение математического анализа и алгебры
- •Тема 1.1. Математические методы в маркетинге
- •1.1.1. Основы моделирования спроса и потребления.
- •1.1.2. Коэффициенты эластичности спроса по цене: практическое значение, оценивание, свойства.
- •1.1.3. Функции спроса, уравнение Слуцкого
- •1.1.4. Производственные функции.
- •1.1.5. Функции выпуска продукции; функции затрат ресурсов.
- •1.1.6. Экономические примеры производственной деятельности фирм.
- •Пример 5. Предположим, что необходимо оценить работу некоторой отрасли, если известен объем производства отрасли y, затраты трудовых ресурсов l и объем используемого капитала к:
- •Исходя из теоретических знаний можем предположить, что зависимость объема производства от труда и капитала описывается пф Кобба-Дугласа .
- •Задания и задачи
- •1.1.8. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 1.2. Балансовые модели
- •1.2.1. Модель Леонтьева многоотраслевой экономики
- •1.2.2. Модель равновесных цен
- •1.2.3. Модель международной торговли.
- •1.2.4. Практический блок Пример
- •Контрольные вопросы
- •Задания и задачи
- •1.2.5. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Раздел 2. Экономико-математические методы
- •Тема 2.1. Моделирование задач принятия решений
- •2.1.1. Этапы математического моделирования.
- •2.1.2. Основные понятия математического моделирования.
- •2.1.3. Основные типы экономических моделей
- •2.1.4. Практический блок Пример 1
- •Контрольные вопросы
- •Что представляют собой ограничения экстремальной задачи?
- •Что представляет собой целевая функция экстремальной задачи.
- •Приведите примеры экономико-математических моделей.
- •2.1.5. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.2. Линейное программирование
- •2.2.1. Моделирование задачи оптимизации производства методами линейного программирования.
- •2.2.2. Геометрическая интерпретация задачи линейного программирования.
- •2.2.3. Общая задача линейного программирования.
- •2.2.4. Устойчивость оптимального решения.
- •2.2.5. Обьективно-обусловленные оценки.
- •2.2.6. Двойственная задача линейного программирования.
- •2.2.7. Применение основной задачи линейного программирования к решению некоторых экономических задач
- •1. Задача использования ресурсов.
- •2. Задача оптимального использования удобрений.
- •3. Задача составления диеты.
- •4. Задача об использовании мощностей (задача о загрузке оборудования)
- •5. Задача о раскрое материалов.
- •2.2.8. Практический блок Пример
- •2. Графическое решение системы и определение оптимальных объемов производства.
- •5. Объективно обусловленные оценки ресурсов
- •6. Устойчивость решения при изменении удельной прибыли.
- •8. Объективно-обусловленные оценки ресурсов показывают:
- •Контрольные вопросы
- •Задания и задачи
- •2.2.9. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.3. Задачи транспортного типа
- •2.3.1. Экономико-математическая модель транспортной задачи.
- •2.3.2. Исходный опорный план.
- •2.3.3. Распределительный метод решения транспортной задачи.
- •2.3.5. Вырожденные случаи. Открытая транспортная задача.
- •2.3.6. Практический блок Пример
- •1. Математическая модель.
- •2. Получение начального (опорного) плана методом северо-западного угла
- •3. Итерации по улучшению плана до получения оптимального решения.
- •Контрольные вопросы
- •Задания и задачи
- •2.3.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.4. Математические основы сетевого моделирования
- •2.4.1. Построение сетевых графиков.
- •2.4.2. Временные параметры сетевого графика
- •2.4.3. Методы оптимизации сетевого графика
- •2.4.4. Организационные аспекты применения сетевых моделей
- •2.4.5. Практический блок Примеры
- •1. Построение сетевых графиков, согласно заданному порядку предшествования работ.
- •8. Критическое время это:
- •Контрольные вопросы
- •Задания и задачи
- •2.4.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.5. Математические методы логистики
- •2.5.1. Экономическое содержание задач управления запасами.
- •2.5.2. Детерминированная статическая модель без дефицита.
- •2.5.3. Детерминированная статическая модель с дефицитом.
- •2.5.4. Простая вероятностная модель.
- •2.5.5. Практический блок Примеры
- •1. Детерминированная статическая модель без дефицита.
- •2. Детерминированная статическая модель с дефицитом.
- •3. Вероятностная модель
- •Контрольные вопросы
- •Задания и задачи
- •2.5.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.6. Задачи массового обслуживания
- •2.6.1. Общие понятия теории очередей.
- •2.6.2. Одноканальные системы массового обслуживания.
- •2.6.3. Многоканальные системы массового обслуживания.
- •2.6.4. Прикладные аспекты теории массового обслуживания.
- •2.6.5. Практический блок Примеры
- •1. Одноканальная система обслуживания с неограниченной очередью
- •2. Одноканальная система обслуживания с ограниченной очередью.
- •3. Многоканальная система обслуживания с неограниченной очередью.
- •Контрольные воросы
- •Задания и задачи
- •2.6.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.7. Состязательные задачи
- •2.7.1. Основные понятия теории игр.
- •2.7.3. Игры с природой
- •2.7.4. Биматричные игры
- •2.7.5. Понятие коалиционных игр.
- •2.7.6. Практический блок Примеры
- •Пример 2
- •Контрольные вопросы
- •Задания и задачи
- •2.7.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.8. Динамическое программирование
- •2.8.1. Область применения моделей динамического программирования.
- •2.8.2. Основные идеи динамического программирования.
- •2.8.3. Распределение q средств между n предприятиями.
- •2.8.4. Динамическая задача управления запасами.
- •2.8.5. Стохастическое динамическое программирование.
- •2.8.6. Задачи износа и замены оборудования
- •2.8.7. Практический блок Пример 1
- •Контрольные вопросы
- •Задания и задачи
- •2.8.8. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •2.9. Многокритериальная оптимизация.
- •2.9.1. Понятие многокритериальности.
- •2.9.2. Оптимальность по Парето.
- •2.9.3. Метод идеальной точки.
- •Заданы две целевые функции
- •2.9.4. Принятие решений на основе метода анализа иерархий
- •2.9.5. Общая классификация эвристических методов решения многокритериальных задач
- •2.9.6. Практический блок Пример 1
- •Пример 2
- •Контрольные вопросы
- •Задания и задачи
- •2.9.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •1. Математические методы в маркетинге
- •2. Исследование производственных функций
- •Вопросы для подготовки к зачету
- •Итоговые тесты
- •Список рекомендуемой литературы
- •Предметный указатель
1.1.5. Функции выпуска продукции; функции затрат ресурсов.
Функции зависимости издержек и дохода от объема производства.
Рассмотрим функции издержек C(q) и дохода фирмы R(q) = qp(q) в зависимости от объема производства q. Поведение функции дохода определяется функцией спроса p(q), рассмотренной выше. Поэтому рассмотрим более подробно поведение функции издержек. В типичном случае издержки фирмы велики при небольшом объеме производства q и вначале растут быстрее, чем доход. С увеличением объема производства скорость роста издержек уменьшается, и в какой-то момент они сравниваются с доходом, и фирма начинает получать прибыль. При увеличении объема производства прибыль увеличивается, достигая максимума при оптимальном значении q. При дальнейшем увеличении объема производства издержки снова начинают расти быстрее дохода (исчерпаны эффективные ресурсы, нужны дополнительные помещения, сырье, квалифицированная рабочая сила) и прибыль фирмы уменьшается, достигая отрицательных значений при достаточно больших объемах производства. Им, например, могут соответствовать функции R(q) = aq – bq2, C(q)=cq – dq2 + eq3 . Постройте графики функций дохода, издержек и прибыли.
Распределение налогового бремени.
Пусть р – цена товара на некотором рынке, S(p) – его предложение при цене р, D(p) – спрос. Равновесная цена р0 определяется уравнением S(р0)=D(р0).
Предположим, что вводится дополнительный налог с производителей в размере t с каждой единицы товара. Так как зависимость предложения от цены определяется прибылью, то St(p) = S(p – t), где St(p) – функция предложения после введения налога. Таким образом, кривая предложения после введения налога сдвигается на t вверх (рис. 1.1.5).
Рис.
1.1.5
Пусть рt – новая равновесная цена. Равенство спроса и предложения при цене рt выражается уравнением
S(рt – t)=D(рt).
Так как S(p0) = D(p0), то из последнего равенства следует
S'(p0) (p – t)=D'(p0)p.
Итак, после введения дополнительного налога на покупку единицы товара затраты потребителя увеличатся на величину р, которую можно (приближенно) рассчитать по формуле
Соответственно, доход производителя (также на единицу продукции) уменьшится на
Следовательно, налоговое бремя распределяется между потребителями и производителями продукции в отношении
p:[t–p]=S'(p0):[ –D'(p0)],
а поскольку в точке р0 спрос равен предложению, то
S'(p0):[ –D'(p0)]= ЕS:[ – ЕD],
где ЕS, ЕD – коэффициенты эластичности спроса и предложения.
Пример 1.1.6. Пусть ценовая эластичность спроса равна (–3), ценовая эластичность предложения равна 2, а вводимый налог t = 100. Тогда цена после введения этого налога увеличится на 2/(2+3)•100 = 40, а прибыль производителя от единицы продукции уменьшится на 100 – 40 = 60.
Цена, предельные издержки и объем производства.
Пусть q – выпуск продукции (в натуральных единицах); R(q) – выручка от продаж; C(q) – издержки производства, связанные с выпуском q единиц продукции. Тогда прибыль
П(q)=R(q) – C(q).
Предельной выручкой называется выручка от единицы продукции, предельными издержками – издержки от производства единицы продукции. Эти экономические понятия соответствуют значениям производных R'(q) и C'(q).
Предположим, что максимум прибыли достигается в некоторой точке q*0.
Тогда П'(q*) = 0, и в точке q = q* получаем равенство
R'(q*)=C'(q*). (1.1.11)
В экономической теории это равенство вводится как правило, согласно которому фирма, максимизирующая свою прибыль, устанавливает объем производства таким образом, чтобы предельная выручка была равна предельным издержкам.
В случае, когда объем производства q не влияет на цену продукции p, имеем R(q) =pq, R'(q) =p. Равенство (1.1.11) принимает вид
р=C'(q*). (1.1.12)
(для максимизации прибыли необходимо устанавливать такой объем производства, при котором цена была бы равна предельным издержкам).
Пример 1.1.7. Найти оптимальный объем производства, если р=15, C(q)=q3+3q.
Решение. Прибыль при производстве q единиц продукт будет
П(q) = l5q – q3– 3q =q(l2 – q2).
Используя равенство (1.2.2), получим
l5=C'(q*)=3(q*)2+3, откуда q*= 2.
Рассмотрим теперь более общий случай, когда цена продукции является функцией p=p(q) от объема выпуска q.
Из (1.1.11) получим уравнение для цены
R'(q*)=p'(q*)q*+ p(q*)= p(q*)(Epq(q*)+1)= C'(q*), откуда
(1.1.13)
Так как Epq(q) < 0, то из равенства (1.1.13) следует, что цена р(q*) больше предельных издержек C '(q*).
Предположим
теперь, что фирма является монополией.
В этом случае при цене р фирма будет
производить столько единиц продукции,
сколько требуется покупателям, т.е. q =
D(p), где D(p) – функция спроса. Таким
образом, функция D(p) будет обратной
функцией для функции p(q). Из свойств
эластичности следует что Epq
(q*)=
(p(q*)).
Пусть p*=p(q*) цена, соответствующая выпуску q*. Тогда уравнение (1.1.13) приобретает вид
(1.1.14)
Пусть,
например, ED
= –1.2. Тогда (+1)–1=(–5/6+1)–1=6,
т.е. цена монополиста р* в 6 раз (!) выше
его предельных издержек.
При неэластичном спросе монополия, стремящаяся увеличить свою прибыль, будет снижать объем выпуска. При этом издержки будут снижаться, а цена и прибыль – увеличиваться. В некоторый момент начнется массовый отказ (из-за отсутствия средств) потребителей от продукции данной монополии. Спрос снова станет эластичным.
Пример 1.1.8. Пусть C(q)=0.5q2 – издержки фирмы-монополиста, D(p) = 40 – 2p – функция спроса. Найдем зависимость цены р от количества произведенной продукции q. Так как q=D(p) = 40 – 2p, то p=20 – 0.5q. Итак, для функции D(p) мы нашли обратную функцию p(q). Прибыль имеет вид
П(q)=(20 – 0.5q)q – 0.5q2=20q – q2.
В точке q* максимума прибыли выполняется равенство П'(q*)=20 – 2q*=0. Находим оптимальный (для монополии) объем производства q*=10. Соответствующая цена будет р* = p(q*)=20 – 0.5q* =15. При этом предельные издержки С'(q*)= 10. Таким образом, цена, наиболее выгодная дли монополии, в полтора раза выше ее предельных издержек. Этот же результат можно получить и по формуле (1.1.14). Проверьте самостоятельно.