
- •Министерство науки и образования российской федерации
- •Раздел 1. Применение математического анализа и алгебры
- •Тема 1.1. Математические методы в маркетинге 13
- •Тема 1.2. Балансовые модели 49
- •Раздел 2. Экономико-математические методы
- •Тема 2.1. Моделирование задач принятия решений 64
- •Тема 2.2. Линейное программирование 77
- •Тема 2.3. Задачи транспортного типа 105
- •Тема 2.4. Математические основы управления проектами 131
- •Тема 2.5. Математические методы логистики 163
- •Тема 2.6. Задачи массового обслуживания 177
- •Тема 2.7. Состязательные задачи 196
- •Тема 2.8. Динамическое программирование 236
- •Тема 2.9. Многокритериальная оптимизация 268
- •Введение
- •Раздел 1. Применение математического анализа и алгебры
- •Тема 1.1. Математические методы в маркетинге
- •1.1.1. Основы моделирования спроса и потребления.
- •1.1.2. Коэффициенты эластичности спроса по цене: практическое значение, оценивание, свойства.
- •1.1.3. Функции спроса, уравнение Слуцкого
- •1.1.4. Производственные функции.
- •1.1.5. Функции выпуска продукции; функции затрат ресурсов.
- •1.1.6. Экономические примеры производственной деятельности фирм.
- •Пример 5. Предположим, что необходимо оценить работу некоторой отрасли, если известен объем производства отрасли y, затраты трудовых ресурсов l и объем используемого капитала к:
- •Исходя из теоретических знаний можем предположить, что зависимость объема производства от труда и капитала описывается пф Кобба-Дугласа .
- •Задания и задачи
- •1.1.8. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 1.2. Балансовые модели
- •1.2.1. Модель Леонтьева многоотраслевой экономики
- •1.2.2. Модель равновесных цен
- •1.2.3. Модель международной торговли.
- •1.2.4. Практический блок Пример
- •Контрольные вопросы
- •Задания и задачи
- •1.2.5. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Раздел 2. Экономико-математические методы
- •Тема 2.1. Моделирование задач принятия решений
- •2.1.1. Этапы математического моделирования.
- •2.1.2. Основные понятия математического моделирования.
- •2.1.3. Основные типы экономических моделей
- •2.1.4. Практический блок Пример 1
- •Контрольные вопросы
- •Что представляют собой ограничения экстремальной задачи?
- •Что представляет собой целевая функция экстремальной задачи.
- •Приведите примеры экономико-математических моделей.
- •2.1.5. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.2. Линейное программирование
- •2.2.1. Моделирование задачи оптимизации производства методами линейного программирования.
- •2.2.2. Геометрическая интерпретация задачи линейного программирования.
- •2.2.3. Общая задача линейного программирования.
- •2.2.4. Устойчивость оптимального решения.
- •2.2.5. Обьективно-обусловленные оценки.
- •2.2.6. Двойственная задача линейного программирования.
- •2.2.7. Применение основной задачи линейного программирования к решению некоторых экономических задач
- •1. Задача использования ресурсов.
- •2. Задача оптимального использования удобрений.
- •3. Задача составления диеты.
- •4. Задача об использовании мощностей (задача о загрузке оборудования)
- •5. Задача о раскрое материалов.
- •2.2.8. Практический блок Пример
- •2. Графическое решение системы и определение оптимальных объемов производства.
- •5. Объективно обусловленные оценки ресурсов
- •6. Устойчивость решения при изменении удельной прибыли.
- •8. Объективно-обусловленные оценки ресурсов показывают:
- •Контрольные вопросы
- •Задания и задачи
- •2.2.9. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.3. Задачи транспортного типа
- •2.3.1. Экономико-математическая модель транспортной задачи.
- •2.3.2. Исходный опорный план.
- •2.3.3. Распределительный метод решения транспортной задачи.
- •2.3.5. Вырожденные случаи. Открытая транспортная задача.
- •2.3.6. Практический блок Пример
- •1. Математическая модель.
- •2. Получение начального (опорного) плана методом северо-западного угла
- •3. Итерации по улучшению плана до получения оптимального решения.
- •Контрольные вопросы
- •Задания и задачи
- •2.3.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.4. Математические основы сетевого моделирования
- •2.4.1. Построение сетевых графиков.
- •2.4.2. Временные параметры сетевого графика
- •2.4.3. Методы оптимизации сетевого графика
- •2.4.4. Организационные аспекты применения сетевых моделей
- •2.4.5. Практический блок Примеры
- •1. Построение сетевых графиков, согласно заданному порядку предшествования работ.
- •8. Критическое время это:
- •Контрольные вопросы
- •Задания и задачи
- •2.4.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.5. Математические методы логистики
- •2.5.1. Экономическое содержание задач управления запасами.
- •2.5.2. Детерминированная статическая модель без дефицита.
- •2.5.3. Детерминированная статическая модель с дефицитом.
- •2.5.4. Простая вероятностная модель.
- •2.5.5. Практический блок Примеры
- •1. Детерминированная статическая модель без дефицита.
- •2. Детерминированная статическая модель с дефицитом.
- •3. Вероятностная модель
- •Контрольные вопросы
- •Задания и задачи
- •2.5.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.6. Задачи массового обслуживания
- •2.6.1. Общие понятия теории очередей.
- •2.6.2. Одноканальные системы массового обслуживания.
- •2.6.3. Многоканальные системы массового обслуживания.
- •2.6.4. Прикладные аспекты теории массового обслуживания.
- •2.6.5. Практический блок Примеры
- •1. Одноканальная система обслуживания с неограниченной очередью
- •2. Одноканальная система обслуживания с ограниченной очередью.
- •3. Многоканальная система обслуживания с неограниченной очередью.
- •Контрольные воросы
- •Задания и задачи
- •2.6.6. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.7. Состязательные задачи
- •2.7.1. Основные понятия теории игр.
- •2.7.3. Игры с природой
- •2.7.4. Биматричные игры
- •2.7.5. Понятие коалиционных игр.
- •2.7.6. Практический блок Примеры
- •Пример 2
- •Контрольные вопросы
- •Задания и задачи
- •2.7.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Тема 2.8. Динамическое программирование
- •2.8.1. Область применения моделей динамического программирования.
- •2.8.2. Основные идеи динамического программирования.
- •2.8.3. Распределение q средств между n предприятиями.
- •2.8.4. Динамическая задача управления запасами.
- •2.8.5. Стохастическое динамическое программирование.
- •2.8.6. Задачи износа и замены оборудования
- •2.8.7. Практический блок Пример 1
- •Контрольные вопросы
- •Задания и задачи
- •2.8.8. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •2.9. Многокритериальная оптимизация.
- •2.9.1. Понятие многокритериальности.
- •2.9.2. Оптимальность по Парето.
- •2.9.3. Метод идеальной точки.
- •Заданы две целевые функции
- •2.9.4. Принятие решений на основе метода анализа иерархий
- •2.9.5. Общая классификация эвристических методов решения многокритериальных задач
- •2.9.6. Практический блок Пример 1
- •Пример 2
- •Контрольные вопросы
- •Задания и задачи
- •2.9.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •1. Математические методы в маркетинге
- •2. Исследование производственных функций
- •Вопросы для подготовки к зачету
- •Итоговые тесты
- •Список рекомендуемой литературы
- •Предметный указатель
2.7.7. Самостоятельная работа студентов Рекомендуемые темы рефератов
Основные термины и определения теории игр.
Задача определения оптимальной стратегии в антагонистической матричной игре с нулевой суммой и её экономическая интерпретация.
Понятие и экономическая интерпретация биматричной игры.
Оптимальные смешанные стратегии: понятие, причины использования, приёмы практической реализации.
Подготовка исходных данных для анализа матричной игры в целях подготовки управленческого решения.
Литература для самостоятельной работы
Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе: Учеб. пособие для вузов. –2‑е изд. М.: ЮНИТИ-ДАНА, 2005. –287 с.
Экономико-математические методы и прикладные модели: Учебное пособие для вузов / Под ред. В.В. Федосеева. –2‑е изд. М.: ЮНИТИ-ДАНА, 2005. –304 с.
Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: Учебное пособие. –2-е изд., перераб. и доп. – М.: Финансы и статистика, 2006. – 368с.
Моделирование экономических процессов: Учебник для студентов вузов, обучающихся по специальностям экономики и управления (060000) / Под ред. М.В. Грачёвой, Л.Н. Фадеевой, Ю.И. Черемных. М.: ЮНИТИ-ДАНА, 2005. –351 с.
Моделирование рисковых ситуаций в экономике и бизнесе: Учебное пособие для студентов вузов / А. М. Дубров, Б. А. Лагоша, Е. Ю. Хрусталев, Т. П. Барановская; Под ред. Б. А. Лагоши. – 2-е изд. М.: Финансы и статистика, 2003. –222 с.
Тема 2.8. Динамическое программирование
2.8.1. ОБЛАСТЬ ПРИМЕНЕНИЯ МОДЕЛЕЙ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ 236
2.8.2. ОСНОВНЫЕ ИДЕИ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ 237
2.8.3. РАСПРЕДЕЛЕНИЕ Q СРЕДСТВ МЕЖДУ N ПРЕДПРИЯТИЯМИ 239
2.8.4. ДИНАМИЧЕСКАЯ ЗАДАЧА УПРАВЛЕНИЯ ЗАПАСАМИ 241
2.8.5. СТОХАСТИЧЕСКОЕ ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ 245
2.8.6. ЗАДАЧИ ИЗНОСА И ЗАМЕНЫ ОБОРУДОВАНИЯ 249
2.8.7. ПРАКТИЧЕСКИЙ БЛОК 256
2.8.8 САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ 267
2.8.1. Область применения моделей динамического программирования.
Элементы динамики и учет времени играли важнейшую роль в некоторых прикладных задачах исследования операций, рассмотренных в предыдущих темах. Однако ранее основное внимание уделялось эффективным методам отыскания численных решений задач большой размерности.
В данной теме решающее значение по-прежнему имеет одновременный учет всех ограничений системы, однако излагаемый здесь материал в основном посвящен динамическим структурным зависимостям оптимизационных моделей. Вначале рассматриваются детерминированные задачи, так что в каждой из них процесс решения приводит к однозначному результату. Затем исследуются вероятностные модели.
Ниже мы изучим условия, которым должен удовлетворять оптимальный многошаговый процесс принятия решений, и покажем, каким образом использовать эти условия для нахождения лучшего варианта. Подобный анализ часто называют динамическим программированием. Будем рассматривать конечный плановый период, в конце темы обсудим особенности оптимизации в условиях бесконечного планового периода с учетом дисконтирования во времени и приведения экономических показателей к исходному моменту времени.
Вот некоторые типичные области применения моделей динамического программирования при принятии решений:
Разработка правил управления запасами, устанавливающих момент пополнения запасов и размер пополняющего заказа.
Разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию.
Определение необходимого объема запасных частей, гарантирующего эффективное использование дорогостоящего оборудования.
Распределение дефицитных капитальных вложений между возможными новыми направлениями их использования.
Выбор методов проведения рекламной кампании, знакомящей покупателя с продукцией фирмы.
Систематизация методов поиска ценного вида ресурса.
Составление календарных планов текущего и капитального ремонта сложного оборудования.
Разработка долгосрочных правил замены выбывающих из эксплуатации основных фондов.