
- •Модуль 1 атомно-молекулярне вчення. Класифікація неорганічних сполук
- •1.1. Основні поняття та закони хімії
- •1.1.1. Ключові положення атомно-молекулярного вчення
- •1.1.2. Поняття загальної хімії
- •1.1.3. Фізичні величини, що застосовуються в хімії
- •Моль – це кількість речовини, яка містить стільки часток – структурних елементів, скільки атомів міститься в ізотопі Карбону с12 масою 0,012 кг.
- •1.1.4. Основні закони хімії
- •М.В. Ломоносов
- •Ж. Пруст
- •Наприклад, у реакції
- •А. Авогадро
- •2) Фактор еквівалентності може дорівнювати 1 і бути меншим за 1.
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •1.2. Основні класи неорганічних сполук
- •1.2.1. Класифікація неорганічних сполук
- •1.2.2. Оксиди
- •1.2.3. Основи
- •1.2.4. Кислоти
- •1.2.6. Генетичний зв’язок між класами неорганічних сполук
- •Класами неорганічних сполук
- •Підсумки
- •Задачі для самостійного розв’язування
- •Модуль 2 будова речовини
- •2.1. Будова атома
- •2.1.1. Складність будови атома та її експериментальне доведення
- •2.1.2. Перші моделі атома
- •Е. Резерфорд
- •2.1.3. Атомні спектри
- •2.1.4. Квантова теорія світла
- •2.1.5. Основні положення теорії будови атома Бора
- •2.1.6. Хвильова природа електрона. Електронні хмари
- •2.1.7. Квантові числа
- •Орієнтація s-, p- I d-орбіталей
- •2.1.8. Принцип Паулі
- •2.1.9. Послідовність заповнення електронами енергетичних рівнів у багатоелектронних атомах
- •Підсумки
- •Д. І. Менделєєв
- •2.2.3. Періодичність властивостей хімічних елементів
- •Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
- •Підсумки
- •2.3.1. Іонний зв’язок
- •2.3.2. Ковалентний зв’язок
- •І електронів у молекулі водню н:h
- •Підсумки
- •Задачі для самостійного Розв’язування
- •Модуль 3 Закономірності перебігу хімічних реакцій
- •3.1.Хімічна термодинаміка
- •3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
- •Термодинаміки
- •Г. І. Гесс
- •1. Тепловий ефект хімічної реакції дорівнює сумі теплових ефектів її проміжних стадій.
- •3. Тепловий ефект хімічної реакції дорівнює різниці між сумою теплот утворення продуктів реакції і сумою теплот утворення вихідних речовин з урахуванням числа молів цих речовин.
- •3.1.2. Напрямленість процесів. Ентропія. Ізобарно-ізотермічний потенціал
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •3.2. Хімічна кінетикА та рівновага
- •3.2.1. Предмет хімічної кінетики
- •3.2.2. Швидкість хімічних реакцій
- •Речовин під час перебігу реакції
- •Залежність швидкості реакції від концентрації реагуючих речовин закон діючих мас
- •3.2.4. Вплив температури на швидкість реакцій. Енергія активації
- •3.2.5. Каталіз
- •3.2.6. Хімічна рівновага
- •Оборотної реакції
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •Приклади розв’язування задач
- •V(t2)моль/лхв.
- •Задачі для самостійного розв’язування
- •Модуль 4 Розчини. Теорія електролітичної дисоціації
- •4.1. Основні поняття про розчини
- •4.1.1. Термінологія, що використовується в теорії розчинів
- •4.1.2. Концентрація розчинів та способи її вираження
- •4.1.3. Колігативні властивості розчинів. Осмос
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.2. Теорія електролітичної дисоціації
- •4.2.1. Теорія електролітичної дисоціації Арреніуса
- •4.2.2. Реакції в розчинах електролітів. Іонні рівняння
- •4.2.3.Константа електролітичної дисоціації
- •4.2.4. Властивості розчинів сильних електролітів
- •4.2.5. Добуток розчинності
- •4.2.6. Дисоціація води. Іонний добуток води. Водневий показник
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.3. Гідроліз
- •4.4. Окисно-відновні реакції
- •Практичні заняття приклади розв’язування задач (до розділу 4.14.2)
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.3)
- •4. Розрахувати рН середовища під час взаємодії з водою амоній ціаніду.
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.4)
- •2. Підібрати коефіцієнти у схемі окисно-відновної реакції
- •Задачі для самостійного розв’язування
- •Предметний покажчик
- •Список рекомендованої літератури
1.2.3. Основи
Основами називають сполуки, які складаються з атома металу чи амонійної групи (NH4) та однієї чи декількох гідроксогруп – ОН .
З погляду теорії електролітичної дисоціації основи – це електроліти, які під час дисоціації утворюють гідроксид – аніони. Наприклад: NaOH, Ca(OH)2, Mg(OH)2, La(OH)3.
Cлід зазначити, що ОН це гідроксид-іон, заряд його дорівнює (–1). Число гідроксид-іонів у основі визначається ступенем окиснення металу.
Номенклатура. Назви основ та амфотерних гідроксидів утворюють з назви катіона і слова “гідроксид”, вказуючи ступінь окиснення елемента або додаючи відповідні числові префікси. Якщо ж метал утворює тільки один гідроксид, то ступінь його окиснення не вказують: Fe(OH)2 – ферум(ІІ) гідроксид, або ферум дигідроксид; Аl(OH)3 – алюміній гідроксид, або алюміній тригідроксид.
Кислотність. Число гідроксогруп, зв’язаних з атомом металу, визначає
кислотність основи. Наприклад LiOH, NaOH – однокислотні основи; Са(OH)2, Ba(OH)2 – двокислотні; Cr(OH)3, Bi(OH)3 – трикислотні.
Фізичні властивості. Основи це тверді речовини. За розчинністю у воді вони поділяються на дві групи: розчинні (луги) та нерозчинні. Лугами є гідроксиди лужних металів (елементів головної підгрупи І групи) і лужноземельних (елементів головної підгрупи ІІ групи, крім берилію та магнію).
Луги – це іонні сполуки. У вузлах кристалічних ґраток твердих лугів знаходяться іони металів і гідроксид-іони. В інших основах хімічний зв’язок має іонно-ковалентний характер.
Хімічні властивості основ. Характерні для основ хімічні реакції наведені в табл. 3. Лише розчинні у воді основи – луги як сильні електроліти у водних розчинах практично повністю дисоціюють з утворенням гідроксид-іонів:
NaOH Na+ + OH-.
Тому вони мають деякі загальні властивості, обумовлені наявністю гідроксид-іонів, наприклад впливають на забарвлення багатьох кислотно-основних індикаторів.
Нерозчинні у воді основи як слабкі електроліти не змінюють колір індикаторів, не взаємодіють з кислотними та амфотерними оксидами, а також солями. Дуже слабко дисоціюють на іони. Невеликої кількості гідроксид-іонів, які містяться в насичених розчинах основ, недостатньо для забезпечення перебігу зазначених реакцій. Нерозчинні у воді основи дають тільки дві реакції.
Амфотерні гідроксиди – це гідроксиди, які виявляють основні та кислотні властивості залежно від умов, тобто від природи другого компонента, який бере участь у кислотно-основній взаємодії.
До амфотерних гідроксидів належать гідроксиди деяких металів головних підгруп (Берилію, Алюмінію), а також багатьох металів побічних підгруп періодичної системи елементів проміжних ступенів окиснення: Be(OH)2 , Al(OH)3, Zn(OH)2,Cr(OH)3.
Тип зв’язку між атомами металу та гідроксогрупами – ковалентний. Усі амфотерні гідроксиди – слабкі електроліти. Оскільки полярність ковалентних зв’язків Ме–О і О–Н у їх молекулах близька, амфотерні гідроксиди можуть дисоціювати і як основа, і як кислота:
Al(OH)3 [Al(OH)2]+ + OH- [Al(OH)]2+ + 2OH- Al3+ + 3OH-;
H3AlO3
3H+
+ AlO
HAlO2
+ H2O
H+
+ AlO
+ H2O.
Амфотерні гідроксиди не змінюють забарвлення індикаторів.