Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
140
Добавлен:
23.03.2015
Размер:
2.44 Mб
Скачать

3.2.5. Каталіз

Каталізатор — це речовина, яка бере участь у проміжних стадіях реакції, прискорює її, але не входить до складу продуктів реакції і по її закінченні залишається незмінною.

Каталізатори мають величезне значення під час промислових і лабораторних хімічних процесів, а також хімічних реакцій, що відбувають­ся в живих організмах, атмосфері, гідросфері. Так, у листках рослин під дією особливих каталіза­торів  ферментів  вуглекислий газ, вода й поглинуте сонячне світло синтезують різноманітні складні органічні сполуки. В організмі людини за участю ферментів відбуваються складні процеси перетворення хімічних сполук, що забезпечу­ють його життєдіяльність. Ферменти відіграють важливу роль у харчовій промисловості, в окремих випадках здійснюють чи допомагають здійснювати багато технологічних процесів, а в інших – ускладнюють їх проведення. Зокрема, перетворення вихідної сировини в таких галузях харчової промисловості, як виробництво вина, пива, спирту, хліба, ряду кисломолочних продуктів, здійснюється за безпосередньої участі ферментів.

Швидкість реакції істотно залежить від енергії активації, причому зменшення останньої (потенціального бар'єра) забезпечує зростання швидкості. Здебільшого дію каталізаторів пояснюють тим, що вони знижують енергію активації. Схема, що відображає різницю енергій активації стадій каталітичного процесу і процесу, який відбувається без каталізатора, наведена далі (рис. 18).

За наявності каталізатора виникають інші активовані ком­плекси, для утворення яких потрібна менша енергія, ніж для утворення активованих комплексів без каталізатора. Наприклад, якщо деякій реакції

А + В = АВ (Ea)

в

Рис. 18. Зміна енергії активації

ідповідає певна енергія активаціїЕа, то за наявності каталіза­тора К речовина А спочатку утворює з

ним нестійку сполуку:

А + К = А...К (Е'а),

яка далі реагує з речовиною В з виділенням каталізатора К і утворенням кінцевого продукту:

А...К + В = АВ + К (Еа).

Енергія активації проміжних стадій (Е'а та Е'а) менша за енергію активації реакції, яка відбувається без каталізатора, тому більша частка молекул матиме достатню енергію для утворення активованих комплексів, що виникають за наявності каталізатора.

Розрізняють два види каталізу — гомогенний і гетерогенний. Під час гомогенного каталізу каталізатор і речовини, які беруть участь у реакції, утворюють одну фазу (газ або розчин). Під час гетерогенного каталізу каталізатор перебуває в системі у ви­гляді самостійної фази.

Реакція

2О2 = 2Н2О + О2,

яка відбувається у водному розчині, прискорюється в разі дода­вання іонів ОН- (розчину лугу), вільного Вr2 або твердого МnО2, тобто для однієї тієї самої реакції можливий і гомогенний, і гетерогенний каталіз.

3.2.6. Хімічна рівновага

Вивчаючи основні закономірності рівноважних процесів, перш за все необхідно розглянути поняття оборотних і необоротних реакцій, оборотність хімічних процесів.

Необоротними хімічними реакціями називаються реакції, які відбуваються тільки в одному напрямку. До таких належать, наприклад, реакції розкладу калій перманґанату під час нагрівання:

2KMnO4 = K2MnO4 + MnO2 + O2

чи взаємодія лужних металів з водою:

2K + 2H2O = 2KOH + H2.

Оборотними називаються реакції, які можуть відбуватися в прямому та зворотному напрямках. До таких реакцій належить, наприклд, взаємодія кисню з воднем:

2H2 + O2 Û 2H2O.

За температури 800 – 1500С кисень із воднем утворюють воду, взаємодіючи дуже бурхливо. При температурі 3000 – 4000С навпаки, вода розкладається з утворенням Н2 і О2. Взаємодія йоду з воднем

H2 + I2 Û 2HI

відбувається при температурі 300 – 400С. За такої ж температури можлива й зворотна реакція розкладу гідроген йодиду.

Більшість хімічних реакцій оборотні. Але для одних за певних умов зворотний напрямок неможливий (взаємодія Н2 і О2), а для інших можливі як прямий, так і зворотний (взаємодія Н2 і I2). В обох наведених прикладах можна виявити зворотну реакцію і навіть визначити швидкість обох напрямків. Існують умови, за яких одночасно відбуваються пряма і зворотна реакції. Однак відомі процеси, для яких визначити швидкість зворотної реакції неможливо і тому можна тільки говорити про її оборотність. З’ясуємо, якою мірою той чи інший оборотний процес залежить від природи реагуючих речовин і умов, за яких здійснюється.

Розглянемо більш детально оборотні реакції, які одночасно за певних умовах відбуваються у двох напрямках:

aA + bB  cC + dD.

У перший момент швидкість прямої реакції

визначається початковими концентраціями вихідних речовин. Швидкість зворотної реакції при цьому дорівнює нулю. У міру взаємодії А і В і утворення С і D швидкість прямої реакції зменшується, а зворотної 

зростає. Через певний час швидкості прямої і зворотної реакцій зрівняються (рис. 19). При цьому кількість утворених молекул С і D буде дорівнювати кількості молекул С i D, які прореагували й перетворились на А і B.

Стан реагуючої системи, за якого швидкості прямої та зворотної реакцій однакові, називається хімічною рівновагою. У стані хімічної рівноваги кількість і концентрація вихідних речовин, а також продуктів їх реакції не змінюються (рівноважні), тобто хімічна рівновага має динамічний характер.

Момент хімічної рівноваги, коли швидкості прямої і зворотної реакції однакові, можна записати так:

v1 = v2, або

,

звідки

За даної температури константи швидкостей k1 і k2 є сталими

величинами, тому їх відношення  також стала величина.

Соседние файлы в папке Посібник_студентам(теорія)