
- •Модуль 1 атомно-молекулярне вчення. Класифікація неорганічних сполук
- •1.1. Основні поняття та закони хімії
- •1.1.1. Ключові положення атомно-молекулярного вчення
- •1.1.2. Поняття загальної хімії
- •1.1.3. Фізичні величини, що застосовуються в хімії
- •Моль – це кількість речовини, яка містить стільки часток – структурних елементів, скільки атомів міститься в ізотопі Карбону с12 масою 0,012 кг.
- •1.1.4. Основні закони хімії
- •М.В. Ломоносов
- •Ж. Пруст
- •Наприклад, у реакції
- •А. Авогадро
- •2) Фактор еквівалентності може дорівнювати 1 і бути меншим за 1.
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •1.2. Основні класи неорганічних сполук
- •1.2.1. Класифікація неорганічних сполук
- •1.2.2. Оксиди
- •1.2.3. Основи
- •1.2.4. Кислоти
- •1.2.6. Генетичний зв’язок між класами неорганічних сполук
- •Класами неорганічних сполук
- •Підсумки
- •Задачі для самостійного розв’язування
- •Модуль 2 будова речовини
- •2.1. Будова атома
- •2.1.1. Складність будови атома та її експериментальне доведення
- •2.1.2. Перші моделі атома
- •Е. Резерфорд
- •2.1.3. Атомні спектри
- •2.1.4. Квантова теорія світла
- •2.1.5. Основні положення теорії будови атома Бора
- •2.1.6. Хвильова природа електрона. Електронні хмари
- •2.1.7. Квантові числа
- •Орієнтація s-, p- I d-орбіталей
- •2.1.8. Принцип Паулі
- •2.1.9. Послідовність заповнення електронами енергетичних рівнів у багатоелектронних атомах
- •Підсумки
- •Д. І. Менделєєв
- •2.2.3. Періодичність властивостей хімічних елементів
- •Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
- •Підсумки
- •2.3.1. Іонний зв’язок
- •2.3.2. Ковалентний зв’язок
- •І електронів у молекулі водню н:h
- •Підсумки
- •Задачі для самостійного Розв’язування
- •Модуль 3 Закономірності перебігу хімічних реакцій
- •3.1.Хімічна термодинаміка
- •3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
- •Термодинаміки
- •Г. І. Гесс
- •1. Тепловий ефект хімічної реакції дорівнює сумі теплових ефектів її проміжних стадій.
- •3. Тепловий ефект хімічної реакції дорівнює різниці між сумою теплот утворення продуктів реакції і сумою теплот утворення вихідних речовин з урахуванням числа молів цих речовин.
- •3.1.2. Напрямленість процесів. Ентропія. Ізобарно-ізотермічний потенціал
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •3.2. Хімічна кінетикА та рівновага
- •3.2.1. Предмет хімічної кінетики
- •3.2.2. Швидкість хімічних реакцій
- •Речовин під час перебігу реакції
- •Залежність швидкості реакції від концентрації реагуючих речовин закон діючих мас
- •3.2.4. Вплив температури на швидкість реакцій. Енергія активації
- •3.2.5. Каталіз
- •3.2.6. Хімічна рівновага
- •Оборотної реакції
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •Приклади розв’язування задач
- •V(t2)моль/лхв.
- •Задачі для самостійного розв’язування
- •Модуль 4 Розчини. Теорія електролітичної дисоціації
- •4.1. Основні поняття про розчини
- •4.1.1. Термінологія, що використовується в теорії розчинів
- •4.1.2. Концентрація розчинів та способи її вираження
- •4.1.3. Колігативні властивості розчинів. Осмос
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.2. Теорія електролітичної дисоціації
- •4.2.1. Теорія електролітичної дисоціації Арреніуса
- •4.2.2. Реакції в розчинах електролітів. Іонні рівняння
- •4.2.3.Константа електролітичної дисоціації
- •4.2.4. Властивості розчинів сильних електролітів
- •4.2.5. Добуток розчинності
- •4.2.6. Дисоціація води. Іонний добуток води. Водневий показник
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.3. Гідроліз
- •4.4. Окисно-відновні реакції
- •Практичні заняття приклади розв’язування задач (до розділу 4.14.2)
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.3)
- •4. Розрахувати рН середовища під час взаємодії з водою амоній ціаніду.
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.4)
- •2. Підібрати коефіцієнти у схемі окисно-відновної реакції
- •Задачі для самостійного розв’язування
- •Предметний покажчик
- •Список рекомендованої літератури
Модуль 3 Закономірності перебігу хімічних реакцій
Хімічна термодинаміка (ХТ) частина загальної термодинаміки, яка вивчає перетворення енергії з однієї форми на іншу, а також шляхи переходу енергії від одних об’єктів до інших. Слово “термодинаміка” походить з грецької мови termos (тепло) і dinamos (сила).
ХТ вивчає перетворення енергії під час хімічних реакцій і здатність хімічних систем виконувати корисну роботу. ХТ є важливою частиною хімії. Предметом ХТ є:
1) передбачення можливості перебігу хімічної реакції;
2) визначення кількості енергії, теоретично необхідної для проведення реакції чи, навпаки, яка повинна виділитися під час її мимовільного перебігу;
3) передбачення того, до якого ступеня пройде реакція, перш ніж вона досягне стану рівноваги.
3.1.Хімічна термодинаміка
3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
Хімічні реакції відбуваються з виділенням або поглинанням енергії. Енергетичні ефекти в реакціях проявляються в різних формах: тепловій, механічній, електричній, світловій.
Так, під час реакцій згоряння речовин енергія виділяється у вигляді теплоти і світла. Прикладом може бути реакція згоряння магнію. Навпаки, реакція термічного розкладу кальцій карбонату на кальцій оксид та карбон(IV) оксид відбувається з поглинанням теплоти, а реакції розкладу аргентум броміду на прості речовини під час фотографічного процесу або фотосинтезу в рослинах – із поглинанням квантів світла. Робота гальванічного елемента або акумулятора є прикладом виділення електричної енергії внаслідок перебігу хімічної реакції, а процеси електролізу навпаки прикладом її поглинання. У разі вибуху тринітротолуолу (тротилу) або динаміту енергія хімічної реакції виділяється у вигляді механічної роботи й теплоти. Реакції горіння фосфору, сірки, розклад озону відбуваються з виділенням теплоти. Утворення ж озону з кисню, розклад калій перманганату (KMnO4), калій нітрату (KNO3), меркурій(ІІ) оксиду (HgO) потребують затрат енергії.
Отже, усі хімічні процеси супроводжуються перетворенням хімічної форми енергії на інші.
Для кількісної характеристики енергетики хімічних реакцій різні енергетичні ефекти зводять до одного виду енергії на підставі еквівалентності багатьох її форм відповідно до закону збереження енергії. Теплова форма енергії пов’язана з хаотичним рухом частинок речовин системи, робота ж – зі спрямованим рухом тіл (їх підняття в полі тяжіння), електронів (електричний струм), із розширенням газу тощо. Ця сумарна величина є тепловим ефектом реакції.
Тепловим ефектом реакції називають кількість енергії, яка виділяється або поглинається під час перебігу реакції.
У міжнародній системі одиниць (СІ) основною одиницею енергії затверджено джоуль (Дж). Для вираження більшої кількості енергії використовують кратну їй одиницю – кілоджоуль (кДж).
Енергетичні ефекти реакцій вивчає розділ хімії, що має назву термохімія.
Розглянемо причини виникнення теплових ефектів у хімічних реакціях. Відомо, що хімічні перетворення – це руйнування хімічних зв’язків між атомами у вихідних речовинах та утворення нових зв’язків у продуктах реакції. Оскільки енергії хімічних зв’язків у вихідних речовинах і продуктах реакцій неоднакові, різниця енергій виділяється або поглинається у вигляді теплоти. Слід зазначити, що на тепловий ефект реакції впливають також зміна енергії міжмолекулярної взаємодії та деякі інші чинники.
Енергії хімічних зв’язків і міжмолекулярної взаємодії є складовими частинами внутрішньої енергії системи.
Внутрішня енергія системи (U) – це термодинамічна функція, яка дорівнює сумі кінетичної і потенціальної енергії всіх часток у системі.
Кінетична енергія – це енергія, пов’язана з рухом тіл. Потенціальна енергія – це енергія положення, яка залежить від розташування тіл.
Хімічна система може складатися з атомів, молекул, іонів чи будь-якої їх комбінації. Усі частинки мають кінетичну й потенціальну енергію. Кінетична енергія зумовлена рухом часток: поступальним, коливальним, обертовим. Потенціальна енергія часток зумовлена електростатичними силами притягання між частками і всередині них.
Абсолютна величина внутрішньої енергії невідома, можна визначити тільки її зміну, тобто різницю між кінцевим і початковим станом системи, які позначатимемо відповідно індексами “2” і “1”:
U = U2 – U1. (13)
Пригадаємо закон збереження енергії, який ще називають першим законом термодинаміки: в усіх процесах, які відбуваються в навколишньому світі, енергія не виникає і не зникає, вона передається від одного об’єкта до іншого або перетворюється з однієї форми на іншу.
Відповідно до закону внутрішня енергія системи U залишається сталою, якщо не відбувається тепловий обмін між системою і навколишнім середовищем (U = 0). У разі підведення до системи теплоти Q вона витрачатиметься на зміну внутрішньої енергії системи й роботу проти зовнішніх сил:
Q = U + A. (14)
Рівняння (14) є математичним виразом першого закону термодинаміки.
Для наочного уявлення фізичного змісту цього рівняння розглянемо систему, що є газом, який міститься в циліндрі, закритому поршнем (рис. 14). Якщо поршень закріпити нерухомо, то об’єм системи не змінюватиметься, робота розширення А дорівнюватиме нулю і вся підведена до системи теплота Qv за сталого об’єму витрачатиметься на збільшення внутрішньої енергії:
Qv = U. (15)
Якщо до системи підводити теплоту (Qp) за сталого тиску й надати змогу поршню вільно рухатись, то під час розширення система виконає роботу:
A
= Fh
= PSh,
(16)
де F – сила, що діє на поршень; h – висота переміщення поршня; Р – тиск; S – площа поршня.
Оскільки Sh дорівнює зміні об’єму системи V, то
A = PV = P(V2 – V1). (17)
У цьому разі рівняння (14) набуває вигляду
Qp=U+P(V2–V1)=U2–U1+P(V2–V1)=
=(U2+PV2)–(U1+PV1). (18)