
- •Модуль 1 атомно-молекулярне вчення. Класифікація неорганічних сполук
- •1.1. Основні поняття та закони хімії
- •1.1.1. Ключові положення атомно-молекулярного вчення
- •1.1.2. Поняття загальної хімії
- •1.1.3. Фізичні величини, що застосовуються в хімії
- •Моль – це кількість речовини, яка містить стільки часток – структурних елементів, скільки атомів міститься в ізотопі Карбону с12 масою 0,012 кг.
- •1.1.4. Основні закони хімії
- •М.В. Ломоносов
- •Ж. Пруст
- •Наприклад, у реакції
- •А. Авогадро
- •2) Фактор еквівалентності може дорівнювати 1 і бути меншим за 1.
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •1.2. Основні класи неорганічних сполук
- •1.2.1. Класифікація неорганічних сполук
- •1.2.2. Оксиди
- •1.2.3. Основи
- •1.2.4. Кислоти
- •1.2.6. Генетичний зв’язок між класами неорганічних сполук
- •Класами неорганічних сполук
- •Підсумки
- •Задачі для самостійного розв’язування
- •Модуль 2 будова речовини
- •2.1. Будова атома
- •2.1.1. Складність будови атома та її експериментальне доведення
- •2.1.2. Перші моделі атома
- •Е. Резерфорд
- •2.1.3. Атомні спектри
- •2.1.4. Квантова теорія світла
- •2.1.5. Основні положення теорії будови атома Бора
- •2.1.6. Хвильова природа електрона. Електронні хмари
- •2.1.7. Квантові числа
- •Орієнтація s-, p- I d-орбіталей
- •2.1.8. Принцип Паулі
- •2.1.9. Послідовність заповнення електронами енергетичних рівнів у багатоелектронних атомах
- •Підсумки
- •Д. І. Менделєєв
- •2.2.3. Періодичність властивостей хімічних елементів
- •Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
- •Підсумки
- •2.3.1. Іонний зв’язок
- •2.3.2. Ковалентний зв’язок
- •І електронів у молекулі водню н:h
- •Підсумки
- •Задачі для самостійного Розв’язування
- •Модуль 3 Закономірності перебігу хімічних реакцій
- •3.1.Хімічна термодинаміка
- •3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
- •Термодинаміки
- •Г. І. Гесс
- •1. Тепловий ефект хімічної реакції дорівнює сумі теплових ефектів її проміжних стадій.
- •3. Тепловий ефект хімічної реакції дорівнює різниці між сумою теплот утворення продуктів реакції і сумою теплот утворення вихідних речовин з урахуванням числа молів цих речовин.
- •3.1.2. Напрямленість процесів. Ентропія. Ізобарно-ізотермічний потенціал
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •3.2. Хімічна кінетикА та рівновага
- •3.2.1. Предмет хімічної кінетики
- •3.2.2. Швидкість хімічних реакцій
- •Речовин під час перебігу реакції
- •Залежність швидкості реакції від концентрації реагуючих речовин закон діючих мас
- •3.2.4. Вплив температури на швидкість реакцій. Енергія активації
- •3.2.5. Каталіз
- •3.2.6. Хімічна рівновага
- •Оборотної реакції
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •Приклади розв’язування задач
- •V(t2)моль/лхв.
- •Задачі для самостійного розв’язування
- •Модуль 4 Розчини. Теорія електролітичної дисоціації
- •4.1. Основні поняття про розчини
- •4.1.1. Термінологія, що використовується в теорії розчинів
- •4.1.2. Концентрація розчинів та способи її вираження
- •4.1.3. Колігативні властивості розчинів. Осмос
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.2. Теорія електролітичної дисоціації
- •4.2.1. Теорія електролітичної дисоціації Арреніуса
- •4.2.2. Реакції в розчинах електролітів. Іонні рівняння
- •4.2.3.Константа електролітичної дисоціації
- •4.2.4. Властивості розчинів сильних електролітів
- •4.2.5. Добуток розчинності
- •4.2.6. Дисоціація води. Іонний добуток води. Водневий показник
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.3. Гідроліз
- •4.4. Окисно-відновні реакції
- •Практичні заняття приклади розв’язування задач (до розділу 4.14.2)
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.3)
- •4. Розрахувати рН середовища під час взаємодії з водою амоній ціаніду.
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.4)
- •2. Підібрати коефіцієнти у схемі окисно-відновної реакції
- •Задачі для самостійного розв’язування
- •Предметний покажчик
- •Список рекомендованої літератури
2.3.1. Іонний зв’язок
У багатоелектронних атомах зовнішні (валентні) електрони з різною силою притягуються ядром. Ця сила тим менша, чим більший радіус атома і чим більше електронів знаходиться між ядром і валентними електронами.
Кількісно взаємодію валентних електронів із ядром оцінюють електронегативністю . Якщо різниця електронегативностей тих атомів, що взаємодіють, перевищує 1,9 ( за літієвою шкалою), то має місце іонний зв'язок. Наприклад, у разі взаємодії натрію (Nа=0,9) з хлором (Cl=3,0) різниця електронегативностей становить 2,1 і є більша за 1,9, тому в даному випадку утворюється іонна сполука – натрій хлорид.
В іонних сполуках атоми локалізують на собі значну кількість електричного заряду і розглядаються як самостійно заряджені частки іони.
Слід зауважити, що в речовині електричний заряд, який локалізується на атомах, завжди менший 1, навіть у випадку утворення сполуки з максимальною різницею електронегативностей складових елементів. Прикладом такої сполуки є цезій флуорид (СsF), де CsF=CsF=3,3. У цій солі заряд іонів Цезію становить (+0,89), а іонів Флуору відповідно (–0,89).
Не мають заряду, більшого за 1, і одноатомні багатозарядні іони: О2, S2, N3, С4 тощо. Це пов’язано з тим, що приєднання до атомів двох і більше електронів з енергетичних міркувань (доведено квантово-хімічними розрахунками) практично неможливе. Так, у кальцій оксиді (СаО) заряд іонів Ca2+ дорівнює (+0,8), іонів O2 (–0,80).
У той же час існування багатоатомних іонів типу СО32, РО43, заряд яких перевищує 1, можливе, оскільки в них надлишок електронної густини розподіляється між усіма атомами, що входять до складу групи.
Отже, іонний зв'язок це електростатична взаємодія катіонів і аніонів. Характерні ознаки іонного зв'язку: ненапрямленість і ненасиченість.
Ненапрямленість іонного зв'язку обумовлена тим, що електричне поле зарядженої частинки поширюється в просторі в усіх напрямках.
Відсутність фізичних обмежень для взаємодії зарядженої частинки з будь-якою кількістю інших заряджених частинок обумовлює ненасиченість іонного зв'язку. Як наслідок кожна частинка певного заряду оточує себе максимально можливою кількістю частинок, які мають заряд протилежного знака. Так, у кристалах натрій хлориду (NаСl) кожен катіон Na+ безпосередньо контактує аж із шістьма аніонами Сl. З такою ж кількістю катіонів Nа+ контактує кожен аніон Сl.
Здатність притягувати до себе певну кількість протиіонів оцінюють координаційним числом (к.ч.). У випадку NаСl координаційне число в іонів Сl і Nа+ однакове і дорівнює 6.
Зрозуміло, що величина к.ч. залежить від співвідношення радіусів катіонів та аніонів: R(Каt)/R(Аn). Якщо R(Каt)/R(Аn) знаходиться в інтервалі 1,37 0,73, то к.ч. = 8, що відповідає кубічній структурі кристалічної решітки. Якщо R(Каt)/R(Аn) = 0,730,41, реалізується октаедрична структура з к.ч. = 6, а якщо R(Каt)/R(Аn) < 0,41 встановлюється тетраедричне оточення іонів з к.ч. = 4.
Особливість упорядкованого розташування в кристалічній решітці катіонів і аніонів обумовлює наявність у речовин з іонним типом хімічного зв'язку таких специфічних властивостей, як твердість і крихкість.
Значна твердість кристалічних речовин пов'язана з тим, що кожен іон, взаємодіючи з великою кількістю протиіонів, міцно утримується у своєму вузлі, і для того щоб змістити один шар іонів відносно інших, потрібно докласти великих зусиль. Але якщо це вдається, то, як видно з рис. 11, кожен іон попадає на однойменні частинки, внаслідок чого іонні шари різко відштовхуються і кристал розділяється. У результаті багаторазової інтенсивної механічної дії кристал розпадається на велику кількість дрібних частинок, тобто розкришується.
Тиск
ΘΘ
ΘΘ
ΘΘ
Тріщина
ΘΘ ΘΘ
ΘΘ
Відштовхування
Рис. 11. Механізм кришіння кристалічної речовини