
- •Модуль 1 атомно-молекулярне вчення. Класифікація неорганічних сполук
- •1.1. Основні поняття та закони хімії
- •1.1.1. Ключові положення атомно-молекулярного вчення
- •1.1.2. Поняття загальної хімії
- •1.1.3. Фізичні величини, що застосовуються в хімії
- •Моль – це кількість речовини, яка містить стільки часток – структурних елементів, скільки атомів міститься в ізотопі Карбону с12 масою 0,012 кг.
- •1.1.4. Основні закони хімії
- •М.В. Ломоносов
- •Ж. Пруст
- •Наприклад, у реакції
- •А. Авогадро
- •2) Фактор еквівалентності може дорівнювати 1 і бути меншим за 1.
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •1.2. Основні класи неорганічних сполук
- •1.2.1. Класифікація неорганічних сполук
- •1.2.2. Оксиди
- •1.2.3. Основи
- •1.2.4. Кислоти
- •1.2.6. Генетичний зв’язок між класами неорганічних сполук
- •Класами неорганічних сполук
- •Підсумки
- •Задачі для самостійного розв’язування
- •Модуль 2 будова речовини
- •2.1. Будова атома
- •2.1.1. Складність будови атома та її експериментальне доведення
- •2.1.2. Перші моделі атома
- •Е. Резерфорд
- •2.1.3. Атомні спектри
- •2.1.4. Квантова теорія світла
- •2.1.5. Основні положення теорії будови атома Бора
- •2.1.6. Хвильова природа електрона. Електронні хмари
- •2.1.7. Квантові числа
- •Орієнтація s-, p- I d-орбіталей
- •2.1.8. Принцип Паулі
- •2.1.9. Послідовність заповнення електронами енергетичних рівнів у багатоелектронних атомах
- •Підсумки
- •Д. І. Менделєєв
- •2.2.3. Періодичність властивостей хімічних елементів
- •Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
- •Підсумки
- •2.3.1. Іонний зв’язок
- •2.3.2. Ковалентний зв’язок
- •І електронів у молекулі водню н:h
- •Підсумки
- •Задачі для самостійного Розв’язування
- •Модуль 3 Закономірності перебігу хімічних реакцій
- •3.1.Хімічна термодинаміка
- •3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
- •Термодинаміки
- •Г. І. Гесс
- •1. Тепловий ефект хімічної реакції дорівнює сумі теплових ефектів її проміжних стадій.
- •3. Тепловий ефект хімічної реакції дорівнює різниці між сумою теплот утворення продуктів реакції і сумою теплот утворення вихідних речовин з урахуванням числа молів цих речовин.
- •3.1.2. Напрямленість процесів. Ентропія. Ізобарно-ізотермічний потенціал
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •3.2. Хімічна кінетикА та рівновага
- •3.2.1. Предмет хімічної кінетики
- •3.2.2. Швидкість хімічних реакцій
- •Речовин під час перебігу реакції
- •Залежність швидкості реакції від концентрації реагуючих речовин закон діючих мас
- •3.2.4. Вплив температури на швидкість реакцій. Енергія активації
- •3.2.5. Каталіз
- •3.2.6. Хімічна рівновага
- •Оборотної реакції
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •Приклади розв’язування задач
- •V(t2)моль/лхв.
- •Задачі для самостійного розв’язування
- •Модуль 4 Розчини. Теорія електролітичної дисоціації
- •4.1. Основні поняття про розчини
- •4.1.1. Термінологія, що використовується в теорії розчинів
- •4.1.2. Концентрація розчинів та способи її вираження
- •4.1.3. Колігативні властивості розчинів. Осмос
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.2. Теорія електролітичної дисоціації
- •4.2.1. Теорія електролітичної дисоціації Арреніуса
- •4.2.2. Реакції в розчинах електролітів. Іонні рівняння
- •4.2.3.Константа електролітичної дисоціації
- •4.2.4. Властивості розчинів сильних електролітів
- •4.2.5. Добуток розчинності
- •4.2.6. Дисоціація води. Іонний добуток води. Водневий показник
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.3. Гідроліз
- •4.4. Окисно-відновні реакції
- •Практичні заняття приклади розв’язування задач (до розділу 4.14.2)
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.3)
- •4. Розрахувати рН середовища під час взаємодії з водою амоній ціаніду.
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.4)
- •2. Підібрати коефіцієнти у схемі окисно-відновної реакції
- •Задачі для самостійного розв’язування
- •Предметний покажчик
- •Список рекомендованої літератури
2.2.3. Періодичність властивостей хімічних елементів
Усі властивості елементів, що визначаються електронною будовою атома, закономірно змінюються по періодах і групах періодичної системи.
Хімічна природа елемента обумовлена здатністю його атома втрачати або приєднувати електрони. Ця здатність може бути кількісно оцінена енергією іонізації атома та його спорідненістю до електрона.
Енергією іонізації (I) називається кількість енергії, необхідної для відриву електрона від незбудженого атома:
Е + I = Е+ + ē, кДж/моль або еВ/атом.
Значення енергії іонізації в електрон-вольтах на атом чисельно дорівнює потенціалам іонізації у вольтах.
Для багатоелектронних атомів енергії іонізації I1, I2, I3, … відповідають відриву першого, другого та інших електронів. При цьому завжди I1 I2 I3, оскільки збільшення числа відірваних електронів зумовлює зростання позитивного заряду іона, що утворюється.
Енергія іонізації атома сильно залежить від його електронної конфігурації. Так завершені електронні шари проявляють підвищену стійкість. Найменші значення енергії іонізації I1 мають s-елементи І групи (Li, Na, К). Значення ж енергії іонізації I2 у них різко зростає, що відповідає видаленню електрона із завершеного шару (ns2np6 і 2s2 у Li). Аналогічне для s-елементів ІІ групи (Be, Mg, Ca) видалення електрона із завершеного шару (ns2np6 і 2s2 у Be) обумовлює різке підвищення енергії іонізації I3.
Найменшу енергію іонізації (35 еВ) мають s-елементи І групи, найбільшу – s- і р-елементи VIII групи. Зростання енергії іонізації під час переходу від s-елементів першої групи до р-елементів восьмої групи обумовлюється зростанням заряду ядра.
Із переходом від s-елементів I групи до р-елементів VIII групи енергія іонізації змінюється немонотонно, із проявом внутрішньої періодичності. Порівняно велике значення енергії іонізації мають елементи II групи (Be, Mg, Ca) і V групи (N, P, As). У той же час порівняно менші значення енергії іонізації мають елементи III (B, Al, Ga) і VI (О, S, Se) груп.
Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
Е + ē = Е F, кДж/моль або еВ/атом.
Спорідненістю до електрона чисельно дорівнює енергії іонізації негативно зарядженого іона Е, але протилежна за знаком.
Дійсні значення спорідненості до електрона знайдені лише для невеликої кількості елементів. Зрозуміло, що спорідненість до електрона залежить від електронної конфігурації атома, і в характері її зміни зі збільшенням порядкового номера елемента спостерігається виражена періодичність.
Найбільшу спорідненість до електрона мають р-елементи VII групи. Найменші й навіть негативні значення мають атоми з конфігурацією s2 (Be, Mg, Zn) і s2p6 (Ne, Ar, Kr) або з напівзаповненою р-оболонкою (N,P,As). Це є додатковим доказом стійкості електронних конфігурацій.
Виділенням енергії супроводжується приєднання одного електрона до атомів Оксигену, Сульфуру, Карбону та деяких інших. Таким чином, для вказаних елементів сили притягання до ядра додаткового електрона виявляються більшими, ніж сили відштовхування між додатковим електроном і електронною оболонкою атома. Подальше приєднання електронів до атома, тобто двох, трьох і більше згідно з квантово-механічними розрахунками неможливе.
Поняття електронегативності () умовне. Воно дозволяє оцінити здатність атома певного елемента відтягувати на себе електронну густину порівняно з атомами інших елементів у сполуках. Очевидно, що ця здатність залежить від енергії іонізації атома та його спорідненості до електрона. Згідно з одним із визначень (за Маллікеном) електронегативність атома може бути виражена як півсума його енергії іонізації та спорідненості до електрона: =1/2(I+F). Існує близько 20 шкал електронегативності. Значення електронегативності різних шкал відмінні, але відносне розташування елементів у ряді електронегативності однакове. У шкалі електронегативності Полінга електронегативність Флуору дорівнює 4,0.
У періодах спостерігається загальна тенденція до зростання електронегативності елементів, а в підгрупах – до її зменшення. Найменшими значеннями електронегативності характеризуються s-елементи І групи, а найбільшими – р-елементи VII групи.
Строго кажучи, елементу не можна приписати постійну електронегативність. Вона залежить від багатьох чинників, зокрема від валентного стану еле-мента, типу сполуки, до якої він входить та ін. Проте це поняття потрібне для якісного пояснення властивостей хімічного зв'язку в сполуках.
Атомні радіуси. Радіуси атомів та іонів є дуже важливою характеристикою. Із урахуванням цього геометричного параметра була пояснена велика кількість експериментальних фактів і властивостей хімічних елементів і їх сполук. Атомні радіуси елементів змінюються періодично залежно від їх порядкового номера. Зменшуючись від лужного металу до галогену, атомний радіус наступного лужного металу знову збільшується порівняно з радіусом атома попереднього. Так, атом Натрію має радіус 0,186 нм, Магнію – 0,16 нм, Хлору – 0,099 нм, а радіус атома Калію знову збільшується 0,231 нм.
Таким чином, загальна закономірність у зміні радіусів полягає в тому, що в межах заповнення електронами підрівня (s-, p-, d- або f-) атомні радіуси, як правило, зменшуються. Пояснити це можна тим, що зі зростанням заряду сила притягання ядра більша, ніж взаємне відштовхування електронів.
Звичайно атомні радіуси помітно збільшуються по групах періодичної системи зверху вниз. Це спостерігається, наприклад, у лужних і лужноземельних металів, галогенів та ін. У зв’язку з тим, що між 4s-елементом Кальцієм і 4р-елементом Галієм знаходиться десять 3d-елементів, радіус атома Галію (0,122 нм) менший радіуса атома Алюмінію (0,143 нм). Радіус же атома d-елемента Скандію (0,16 нм) більший радіуса атома Алюмінію. Тому хімічні властивості Галію не відповідають ряду B – Al – Ga, а властивості Скандію навпаки, не зважаючи на те, що B, Al, Ga – р-елементи, а Скандій – d-елемент.
Другий виняток із загальної закономірності збільшення атомних радіусів у групах спостерігається в елементів, наступних після лантаноїдів. Зменшення радіусів атомів лантаноїдів зі збільшенням атомної маси називається лантаноїдним стисненням. Причина його та сама – зі збільшенням заряду ядра сильнішає притягання електронів. Число ж електронних шарів у межах одного періоду не збільшується. У результаті лантаноїдного стиснення атомний радіус Гафнію (0,157 нм) дорівнює радіусу Цирконію (0,157 нм), що як наслідок обумовлює дуже велику схожість у поведінці Цирконію і Гафнію, Ніобію і Танталу. Крім лантаноїдного існує й актиноїдне стиснення для 5f-елементів.
Із переходом по періоду зліва направо на одну клітинку радіуси атомів та іонів зменшуються приблизно на стільки, на скільки вони збільшуються із переходом зверху вниз по групі.
Таким чином, радіуси сусідніх елементів, розташованих по діагоналі, наприклад Li і Mg, а також Be і Al, близькі. Це положення було висловлене ще Д.І.Менделєєвим. Воно лежить в основі діагональної закономірності. Відповідно до неї Літій за деякими властивостями більше нагадує Магній, ніж решта лужних металів. Так само як і Магній, Літій дає малорозчинні фосфат і карбонат. Обидва метали порівняно легко взаємодіють із молекулярним азотом, утворюючи нітриди.
Таким чином,знаючи положення елемента в періодичній системі, можна передбачати властивості його сполук, застосовуючи такі відомості:
1. Склад вищих солетворних оксидів елементів визначається номером групи (табл. 5).
Таблиця 5. Формули характерних сполук хімічних елементів
Сполука |
Номер групи | |||||||
I |
II |
III |
IV |
V |
VI |
VII |
VIII | |
Вищий солетворний оксид |
Е2О |
ЕО |
Е2О3 |
ЕО2 |
Е2О5 |
ЕО3 |
Е2О7 |
ЕО4 |
Летка гідрогеновмісна сполука елемента головної підгрупи |
|
|
|
ЕН4 |
ЕН3 |
ЕН2 |
ЕН |
|
2. Гідрогеновмісні леткі сполуки певного складу утворюються лише неметалами, тобто елементами тільки головних підгруп IV – VII груп (табл. 5). Слід розрізняти загальне поняття “гідриди елементів” і конкретне “леткі гідрогеновмісні сполуки”. Гідриди – сполуки з Гідрогеном різного складу та природи утворюють майже всі елементи, а леткі гідрогеновмісні тільки неметали.
3. У періодах хімічні властивості змінюються від металічних (елементи початку періодів) через проміжні між металічними та неметалічними до неметалічних (елементи кінця періодів). У великих періодах це відбувається повільніше, ніж у малих у зв’язку із сукупністю перехідних елементів.
4. У головних підгрупах зі зростанням атомних мас збільшуються металічні та зменшуються неметалічні властивості, зростають густини простих речовин, знижуються температури плавлення простих речовин металів і підвищуються температури плавлення простих речовин неметалів. Ці явища пояснюються на основі електронної будови атомів.
5. Властивості кожного елемента виражаються як середні між властивостями елементів, що оточують його в періодичній системі з чотирьох боків.