
- •Модуль 1 атомно-молекулярне вчення. Класифікація неорганічних сполук
- •1.1. Основні поняття та закони хімії
- •1.1.1. Ключові положення атомно-молекулярного вчення
- •1.1.2. Поняття загальної хімії
- •1.1.3. Фізичні величини, що застосовуються в хімії
- •Моль – це кількість речовини, яка містить стільки часток – структурних елементів, скільки атомів міститься в ізотопі Карбону с12 масою 0,012 кг.
- •1.1.4. Основні закони хімії
- •М.В. Ломоносов
- •Ж. Пруст
- •Наприклад, у реакції
- •А. Авогадро
- •2) Фактор еквівалентності може дорівнювати 1 і бути меншим за 1.
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •1.2. Основні класи неорганічних сполук
- •1.2.1. Класифікація неорганічних сполук
- •1.2.2. Оксиди
- •1.2.3. Основи
- •1.2.4. Кислоти
- •1.2.6. Генетичний зв’язок між класами неорганічних сполук
- •Класами неорганічних сполук
- •Підсумки
- •Задачі для самостійного розв’язування
- •Модуль 2 будова речовини
- •2.1. Будова атома
- •2.1.1. Складність будови атома та її експериментальне доведення
- •2.1.2. Перші моделі атома
- •Е. Резерфорд
- •2.1.3. Атомні спектри
- •2.1.4. Квантова теорія світла
- •2.1.5. Основні положення теорії будови атома Бора
- •2.1.6. Хвильова природа електрона. Електронні хмари
- •2.1.7. Квантові числа
- •Орієнтація s-, p- I d-орбіталей
- •2.1.8. Принцип Паулі
- •2.1.9. Послідовність заповнення електронами енергетичних рівнів у багатоелектронних атомах
- •Підсумки
- •Д. І. Менделєєв
- •2.2.3. Періодичність властивостей хімічних елементів
- •Спорідненістю до електрона (f) називається енергетичний ефект процесу приєднання електрона до нейтрального атома е з перетворенням його на негативний іон е-:
- •Підсумки
- •2.3.1. Іонний зв’язок
- •2.3.2. Ковалентний зв’язок
- •І електронів у молекулі водню н:h
- •Підсумки
- •Задачі для самостійного Розв’язування
- •Модуль 3 Закономірності перебігу хімічних реакцій
- •3.1.Хімічна термодинаміка
- •3.1.1. Теплові ефекти. Внутрішня енергія та ентальпія
- •Термодинаміки
- •Г. І. Гесс
- •1. Тепловий ефект хімічної реакції дорівнює сумі теплових ефектів її проміжних стадій.
- •3. Тепловий ефект хімічної реакції дорівнює різниці між сумою теплот утворення продуктів реакції і сумою теплот утворення вихідних речовин з урахуванням числа молів цих речовин.
- •3.1.2. Напрямленість процесів. Ентропія. Ізобарно-ізотермічний потенціал
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •3.2. Хімічна кінетикА та рівновага
- •3.2.1. Предмет хімічної кінетики
- •3.2.2. Швидкість хімічних реакцій
- •Речовин під час перебігу реакції
- •Залежність швидкості реакції від концентрації реагуючих речовин закон діючих мас
- •3.2.4. Вплив температури на швидкість реакцій. Енергія активації
- •3.2.5. Каталіз
- •3.2.6. Хімічна рівновага
- •Оборотної реакції
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •Приклади розв’язування задач
- •V(t2)моль/лхв.
- •Задачі для самостійного розв’язування
- •Модуль 4 Розчини. Теорія електролітичної дисоціації
- •4.1. Основні поняття про розчини
- •4.1.1. Термінологія, що використовується в теорії розчинів
- •4.1.2. Концентрація розчинів та способи її вираження
- •4.1.3. Колігативні властивості розчинів. Осмос
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.2. Теорія електролітичної дисоціації
- •4.2.1. Теорія електролітичної дисоціації Арреніуса
- •4.2.2. Реакції в розчинах електролітів. Іонні рівняння
- •4.2.3.Константа електролітичної дисоціації
- •4.2.4. Властивості розчинів сильних електролітів
- •4.2.5. Добуток розчинності
- •4.2.6. Дисоціація води. Іонний добуток води. Водневий показник
- •Підсумки Необхідно зрозуміти
- •Треба вміти
- •Слід запам’ятати
- •4.3. Гідроліз
- •4.4. Окисно-відновні реакції
- •Практичні заняття приклади розв’язування задач (до розділу 4.14.2)
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.3)
- •4. Розрахувати рН середовища під час взаємодії з водою амоній ціаніду.
- •Задачі для самостійного розв’язування
- •Приклади розв’язування задач (до розділу 4.4)
- •2. Підібрати коефіцієнти у схемі окисно-відновної реакції
- •Задачі для самостійного розв’язування
- •Предметний покажчик
- •Список рекомендованої літератури
2.1.6. Хвильова природа електрона. Електронні хмари
У 20-х рр. ХХ ст. завдяки роботам де Бройля, Шредінгера, Гейзенберга та інших вчених були розроблені основи хвильової теорії про двоїсту корпускулярно-хвильову природу світлового випромінювання. Ейнштейн довів, що випромінювання є потоком неподільних матеріальних частинок (фотонів), енергія яких визначається рівнянням Планка.
Із рівнянь Планка (E=h) і Eйнштейна (E=mc2) випливає, що h=mc2. Враховуючи, що =с/ і швидкість руху фотона v дорівнює швидкості світла с, одержимо основне рівняння хвильової механіки – рівняння де Бройля:
.
(11)
Із цього рівняння випливає, що частинці масою m, яка рухається із швидкістю v, відповідає хвиля довжиною . Рівняння (11) можна застосовувати для ха-рактеристики руху не лише фотона , а й інших матеріальних мікрочастинок: електрона, нейтрона, протона тощо.
Отже, електрон одночасно є і частинкою, і хвилею. У 1925 р. Гейзенберг запропонував принцип невизначеності, згідно з яким не можна одночасно встановити точне місцезнаходження електрона в просторі та його швидкість, або імпульс.
Нове уявлення про електрон примусило відмовитись від прийнятої раніше моделі атома, за якою електрон рухається по певних колових або еліптичних орбіталях.
Електрон може знаходитися в будь-якій частині простору, який оточує ядро атома, однак ймовірність його місцезнаходження в тій чи іншій частині атома неоднакова.
Рух електрона має хвильовий характер, тому квантова механіка описує цей рух в атомі за допомогою хвильової функції , яка набуває різних значень у різних точках атомного простору. Відомо, щоб знайти точку в просторі, треба визначити її координати x, y, z, що математично записується залежністю = f(x,y,z).
Оскільки рух електрона хвилеподібний, визначення хвильової функції зводиться до знаходження амплітуди електронної хвилі.
Рух електронної хвилі кількісно характеризується амплітудою , яку можна обчислити з диференціального рівняння Шредінгера, що пов’язує хвильову функцію з потенціальною і повною енергією електрона. Для одноелектронного атома гідрогену рівняння Шредінгера має такий вигляд:
,(12)
де m
–маса електрона;h
– стала Планка; Е
– повна енергія електрона; U
– потенціальна енергія електрона.
Для атомів з кількома електронами застосовують наближене рівняння Шредінгера. Треба зазначити, що допустимі розв’язки рівняння (12) можливі тільки для певних дискретних значень енергії електрона. Кожній із функцій 1, 2, 3,..., n, які є розв’язками хвильового рівняння, відповідає певне значення енергії Е1, Е2, Е3, ..., Еn.
За рівнянням (12) можна обчислити -амплітуду електронної хвилі (хвильову функцію). Квадрат амплітуди 2 виражає ймовірність місцезнаходження електрона в певній точці атомного простору, а величина 2dV – ймовірність місцезнаходження електрона в елементі об’єму dV.
Як модель стану електрона в атомі у квантовій механіці прийнято уявлення про електронну хмару, густина відповідних ділянок якої пропорційна ймовірності перебування там електрона. Електрон ніби “розмазаний” навколо ядра по сфері, віддаленій від нього на певну відстань. Одна з можливих форм електронної хмари атома показана далі (рис. 9).
Максимальна
електронна густина відповідає найбільшій
імовірності місцезнаходження електрона,
тобто визначається величиною 2.
Очевидно, чим міцніший зв’язок електрона
з ядром, тим електронна хмара менша за
розміром і компактніша за розподілом
заряду.
П
Рис. 9. Електронна хмара
1s-електрона
няння. Тому можна вважати, що хвильова функція, яка є розв’язком рівняння Шредінгера, називається орбіталлю.
Отже, ядро атома оточене електронними хмарами. Основні характеристики, які визначають рух електрона навколо ядра, це його енергія і просторові особливості відповідної йому орбіталі.