
- •Ilya Prigogine, Isabelle Stengers
- •Глава 1. Триумф разума 70
- •Глава 1 383
- •6 К советскому читателю
- •10 Наука и изменение (предисловие)
- •33 Предисловие к английскому изданию новый диалог человека с природой
- •39 Введение вызов науке
- •66 Часть первая. Иллюзия универсального
- •Глава 1. Триумф разума
- •1. Новый Моисей
- •2. Дегуманизованный мир
- •3. Ньютоновский синтез
- •4. Экспериментальный диалог
- •5. Миф у истоков науки
- •6. Пределы классической науки
- •Глава 2. Установление реального
- •1. Законы Ньютона
- •2. Движение и изменение
- •3. Язык динамики
- •4. Демон Лапласа
- •Глава 3. Две культуры
- •1. Дидро и дискуссия о живом
- •2. Критическая ратификация научного знания Кантом
- •3. Натурфилософия. Гегель и Бергсон
- •4. Процесс и реальность: Уайтхед
- •5. Ignoramus et Ignorabimus — лейтмотив позитивистов
- •6. Новое начало
- •150 Часть вторая. Наука о сложности
- •Глава 4. Энергия и индустриальный век
- •1. Тепло — соперник гравитации
- •2. Принцип сохранения энергии
- •3. Тепловые машины и стрела времени
- •4. От технологии к космологии
- •5. Рождение энтропии
- •6. Принцип порядка Больцмана
- •7. Карно и Дарвин
- •Глава 5. Три этапа в развитии термодинамики
- •1. Поток и сила
- •2. Линейная термодинамика
- •3. Вдали от равновесия
- •4. За порогом химической неустойчивости
- •5. Первое знакомство с молекулярной биологией
- •6. Бифуркации и нарушение симметрии
- •7. Каскады бифуркаций и переходы к хаосу
- •8. От Евклида к Аристотелю
- •Глава 6. Порядок через флуктуации
- •1. Флуктуации и химия
- •2. Флуктуации и корреляции
- •3. Усиление флуктуаций
- •4. Структурная устойчивость
- •5. Логистическая эволюция
- •6. Эволюционная обратная связь
- •7. Моделирование сложности
- •8. Открытый мир
- •271 Часть третья. От бытия к становлению
- •272 Часть третья. От бытия к становлению
- •Глава 7. Переоткрытие времени
- •1. Смещение акцента
- •2. Конец универсальности
- •3. Возникновение квантовой механики
- •4. Соотношения неопределенности Гейзенберга
- •5. Временная эволюция квантовых систем
- •6. Неравновесная Вселенная
- •Глава 8. Столкновение теорий
- •1. Вероятность и необратимость
- •2. Больцмановский прорыв
- •3. Критика больцмановской интерпретации
- •4. Динамика и термодинамика — два различных мира
- •5. Больцман и стрела времени
- •Глава 9. Необратимость — энтропийный барьер
- •1. Энтропия и стрела времени
- •2. Необратимость как процесс нарушения симметрии
- •3. Пределы классических понятий
- •4. Возрождение динамики
- •5. От случайности к необратимости
- •6. Энтропийный барьер
- •7. Динамика корреляций
- •8. Энтропия как принцип отбора
- •9. Активная материя
- •361 Заключение. С земли на небо: новые чары природы
- •1. Открытая наука
- •2. Время и времена
- •3. Энтропийный барьер
- •4. Эволюционная парадигма
- •5. Актеры и зрители
- •7. За пределами тавтологии
- •8. Созидающий ход времени
- •9. Состояние внутреннего мира
- •10. Обновление природы
- •386 Примечания Введение
- •Глава 1
- •Глава 2
- •Глава з
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Заключение
- •405 Естествознание и развитие: диалог с прошлым, настоящим и будущим (послесловие)
- •422 Именной указатель
- •425 Предметный указатель
- •Оглавление
8. Энтропия как принцип отбора
Нельзя не удивляться тому, как сильно микроскопическая теория необратимых процессов напоминает традиционную макроскопическую теорию. И в той, и в другой теории энтропия имеет негативный аспект. В макроскопической теории энтропия запрещает некоторые процессы, например перетекание тепла от холодного предмета к теплому. В микроскопической теории энтропия запрещает некоторые классы начальных условий. Различие между тем, что запрещено, и тем, что разрешено, поддерживается во времени законами динамики. Из негативного аспекта возникает позитивный: существование энтропии вместе с ее вероятностной интерпретацией. Необратимость не возникает более, как чудо, на некотором макроскопическом уровне. Макроскопическая необратимость лишь делает зримой ориентированную во времени поляризованную природу того мира, в котором мы живем.
Как мы уже неоднократно подчеркивали, в природе существуют системы с обратимым поведением, допускающие полное описание в рамках законов классической или квантовой механики. Но большинство интересующих нас систем, в том числе все химические и, следовательно, все биологические системы, ориентировано во времени на макроскопическом уровне. Их отнюдь не иллюзорная однонаправленность во времени отражает нарушение временной симметрии на микроскопическом уровне. Необратимость существует либо на всех уровнях, либо не существует ни на одном уровне. Она не может возникнуть, словно чудо, при переходе с одного уровня на другой.
Мы также неоднократно отмечали, что необратимость является исходным пунктом других нарушений
355
симметрии. Например, по общему мнению, различие между частицами и античастицами могло возникнуть только в неравновесном мире. Это утверждение может быть распространено на многие другие ситуации. Вполне вероятно, что с необратимостью через отбор подходящей бифуркации связана и киральная симметрия. Многие из активно проводимых ныне исследований посвящены выяснению того, каким образом необратимость можно «вписать» в структуру материи.
Возможно, читатель обратил внимание на то, что при выводе микроскопической необратимости основной акцент мы делали на классической динамике. Но представления о корреляциях и различии между пред- и послестолкновительными корреляциями применимы не только к классическим, но и к квантовым системам. Исследование квантовых систем более сложно, чем исследование классических, что обусловлено различием между классической и квантовой механикой. Даже малые классические системы, например система, состоящая из нескольких твердых шаров, могут обладать внутренней необратимостью. Но для того чтобы достичь внутренней необратимости в квантовой механике, необходимы большие системы (со многими степенями свободы), которые встречаются в жидкости, газах или теории поля. Ясно, что исследование больших систем сопряжено со значительно большими математическими трудностями. Именно это не позволяет нам рассказать здесь о них подробнее. Тем не менее общая ситуация, с которой мы познакомились на примерах классических систем, сохраняется и в квантовой теории: необратимость там возникает вследствие ограниченной применимости понятия волновой функции, обусловленной той или иной разновидностью квантовой неустойчивости.
Применима в квантовой механике и идея о столкновениях и корреляциях. Как и в классической теории, второе начало запрещает существование в квантовой теории дальнодействующих предстолкновительных корреляций.
Переход к вероятностному процессу сопровождается введением новых сущностей. Второе начало как эволюция от порядка к хаосу может быть понято именно в терминах этих новых понятий. Второе начало приводит к новой концепции материи, к описанию которой мы сейчас переходим.
356