
- •Ilya Prigogine, Isabelle Stengers
- •Глава 1. Триумф разума 70
- •Глава 1 383
- •6 К советскому читателю
- •10 Наука и изменение (предисловие)
- •33 Предисловие к английскому изданию новый диалог человека с природой
- •39 Введение вызов науке
- •66 Часть первая. Иллюзия универсального
- •Глава 1. Триумф разума
- •1. Новый Моисей
- •2. Дегуманизованный мир
- •3. Ньютоновский синтез
- •4. Экспериментальный диалог
- •5. Миф у истоков науки
- •6. Пределы классической науки
- •Глава 2. Установление реального
- •1. Законы Ньютона
- •2. Движение и изменение
- •3. Язык динамики
- •4. Демон Лапласа
- •Глава 3. Две культуры
- •1. Дидро и дискуссия о живом
- •2. Критическая ратификация научного знания Кантом
- •3. Натурфилософия. Гегель и Бергсон
- •4. Процесс и реальность: Уайтхед
- •5. Ignoramus et Ignorabimus — лейтмотив позитивистов
- •6. Новое начало
- •150 Часть вторая. Наука о сложности
- •Глава 4. Энергия и индустриальный век
- •1. Тепло — соперник гравитации
- •2. Принцип сохранения энергии
- •3. Тепловые машины и стрела времени
- •4. От технологии к космологии
- •5. Рождение энтропии
- •6. Принцип порядка Больцмана
- •7. Карно и Дарвин
- •Глава 5. Три этапа в развитии термодинамики
- •1. Поток и сила
- •2. Линейная термодинамика
- •3. Вдали от равновесия
- •4. За порогом химической неустойчивости
- •5. Первое знакомство с молекулярной биологией
- •6. Бифуркации и нарушение симметрии
- •7. Каскады бифуркаций и переходы к хаосу
- •8. От Евклида к Аристотелю
- •Глава 6. Порядок через флуктуации
- •1. Флуктуации и химия
- •2. Флуктуации и корреляции
- •3. Усиление флуктуаций
- •4. Структурная устойчивость
- •5. Логистическая эволюция
- •6. Эволюционная обратная связь
- •7. Моделирование сложности
- •8. Открытый мир
- •271 Часть третья. От бытия к становлению
- •272 Часть третья. От бытия к становлению
- •Глава 7. Переоткрытие времени
- •1. Смещение акцента
- •2. Конец универсальности
- •3. Возникновение квантовой механики
- •4. Соотношения неопределенности Гейзенберга
- •5. Временная эволюция квантовых систем
- •6. Неравновесная Вселенная
- •Глава 8. Столкновение теорий
- •1. Вероятность и необратимость
- •2. Больцмановский прорыв
- •3. Критика больцмановской интерпретации
- •4. Динамика и термодинамика — два различных мира
- •5. Больцман и стрела времени
- •Глава 9. Необратимость — энтропийный барьер
- •1. Энтропия и стрела времени
- •2. Необратимость как процесс нарушения симметрии
- •3. Пределы классических понятий
- •4. Возрождение динамики
- •5. От случайности к необратимости
- •6. Энтропийный барьер
- •7. Динамика корреляций
- •8. Энтропия как принцип отбора
- •9. Активная материя
- •361 Заключение. С земли на небо: новые чары природы
- •1. Открытая наука
- •2. Время и времена
- •3. Энтропийный барьер
- •4. Эволюционная парадигма
- •5. Актеры и зрители
- •7. За пределами тавтологии
- •8. Созидающий ход времени
- •9. Состояние внутреннего мира
- •10. Обновление природы
- •386 Примечания Введение
- •Глава 1
- •Глава 2
- •Глава з
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Заключение
- •405 Естествознание и развитие: диалог с прошлым, настоящим и будущим (послесловие)
- •422 Именной указатель
- •425 Предметный указатель
- •Оглавление
6. Энтропийный барьер
Время течет в одном направлении: из прошлого в будущее. Мы не можем манипулировать со временем, заставить его идти вспять, в прошлое. Путешествие во времени занимало воображения многих писателей: от безымянных создателей «Тысячи и одной ночи» до Герберта Уэллса с его «Машиной времени». В небольшом
346
произведении В. Набокова «Посмотри на арлекинов!»16 описываются муки рассказчика, которому не удается переключиться с одного направления времени на другое, чтобы «повернуть время вспять». В пятом томе своего капитального труда «Наука и цивилизация в Китае» Джозеф Нидэм описывает мечту китайским алхимиков: «свою высшую цель те видели не в превращении металлов в золото, а в манипулировании временем, достижении бессмертия путем резкого замедления всех процессов распада в природе17. Теперь мы лучше понимаем, почему время невозможно «повернуть назад».
Бесконечно высокий энтропийный барьер отделяет разрешенные начальные состояния от запрещенных. Барьер этот никогда не будет преодолен техническим прогрессом: он бесконечно высок. Нам не остается ничего другого, как расстаться с мечтой о машине времени, которая перенесет нас в прошлое. Энтропийный барьер несколько напоминает другой барьер: существование предельной скорости распространения сигналов скорости света. Технический прогресс может приблизить нас к скорости света, но, согласно современным физическим представлениям, мы никогда не сможем превзойти ее.
Для того чтобы понять происхождение энтропийного барьера, нам потребуется вернуться к выражению для H-функции, возникающему в теории цепей Маркова (см. гл. 8). Сопоставим с каждым распределением числа соответствующее значение H-функции. Можно утверждать, что каждое распределение обладает вполне определенным информационным содержанием. Чем выше информационное содержание, тем труднее реализовать его носитель. Покажем, что начальное распределение, запрещенное вторым началом, обладало бы бесконечно большим информационным содержанием. Именно поэтому такие запрещенные распределения невозможно ни реализовать, ни встретить в природе.
Напомним сначала, какой смысл имеет введенная в гл. 8 H-функция. Разделим фазовое пространство на клетки, или ячейки. С каждой ячейкой k сопоставим вероятность Рравн(k) попасть в нее в равновесном состоянии и вероятность Р(k,t) оказаться в ней в неравновесном состоянии.
H -функция есть мера различия между P(k,t) иРравн(k) . В состоянии равновесия, когда различие
347
Рис. 41. Растягивающиеся (последовательность А) и сжимающиеся (последовательность С) слои пересекают различное число клеток («ящиков»), на которые разделено фазовое пространство «преобразования пекаря». Все «квадраты», принадлежащие данной последовательности, относятся к одному моменту времени t=2, но число клеток, на которые разделен каждый квадрат, зависит от начала отсчета времени системы ti.
между вероятностями исчезает, H -функция обращается в нуль. Чтобы сравнить его с «преобразованием пекаря» и двумя порождаемыми им цепями Маркова, необходимо уточнить, как выбираются соответствующие ячейки. Предположим, что мы рассматриваем систему в момент времени 2 (см. рис. 39) и что в исходном состоянии система находилась в момент времени ti. Согласно нашей динамической теории, клетки соответствуют всем возможным пересечениям разбиений от t=ti до t=2. На рис. 39 мы видим, что, когда ti отходит в прошлое,
348
ячейки становятся все более тонкими, поскольку нам приходится вводить все больше и больше вертикальных подразделений. Это отчетливо видно на рис. 41, где-в последовательности В мы получаем при движении сверху вниз ti-=1, 0, —1 и, наконец, ti=—2. Нетрудно видеть, что число ячеек возрастает при этом с 4 до 32.
Коль скоро мы располагаем ячейками, естественно сравнить неравновесное распределение с равновесным в каждой ячейке. В рассматриваемом нами примере неравновесное распределение есть либо растягивающийся слой (последовательность А), либо сжимающийся слой (последовательность С). Обратим внимание на то, что по мере сдвига ti в прошлое растягивающийся слой занимает все большее число ячеек: при ti=—1 он занимает 4 ячейки, при ti=—2 — уже 8 ячеек и т. д. В результате, воспользовавшись формулой из гл. 8, мы получаем конечный «ответ», даже если число ячеек неограниченно возрастает при ti®¥.
Сжимающийся слой в отличие от растягивающегося при любых ti всегда локализован в 4 ячейках. Это приводит к тому, что H-функция для сжимающегося слоя обращается в бесконечность, когда ti уходит в прошлое. Таким образом, различие между динамической системой и цепью Маркова состоит в том, что в случае динамической системы необходимо рассматривать бесконечно много ячеек. Приготовить или наблюдать можно лишь такие меры или вероятности, которые в пределе при бесконечно большом числе ячеек дают конечную информацию или конечную H-функцию. Это исключает сжимающиеся слои18. По той же причине необходимо исключить и распределения, сосредоточенные в одной точке. Начальные условия, соответствующие одной точке в неустойчивой системе, соответствовали бы бесконечной информации. Следовательно, ни реализовать, ни наблюдать их невозможно. И в этом случае второе начало выступает в роли принципа отбора.
В классической схеме начальные условия были произвольными. Для неустойчивых систем произвол исключается. Каждое начальное условие обладает в случае неустойчивых систем определенным информационным содержанием, которое зависит от динамики системы (подобно тому как в «преобразовании пекаря» для вычисления информационного содержания мы прибегли к последовательному делению ячеек). Начальные усло-
349
вия и динамика перестают быть независимыми. Второе начало как принцип отбора представляется нам настолько важным, что мы хотели бы привести еще один пример, на этот раз связанный с динамикой корреляций.