
- •Векторна алгебра
- •Системи лінійних алгебраїчних рівнянь. Метод послідовного виключення невідомих (метод Гаусса).
- •Поняття вектора, лінійні операції над векторами.
- •Поняття лінійно залежних і лінійно незалежних систем векторів.
- •Геометрична інтерпретація поняття лінійної залежності.
- •Поняття базису простору і площини
- •Афінна система координат.
- •Додатковий матеріал з векторної алгебри
- •Поняття лінійного простору.
- •Найпростіші властивості векторного простору.
- •Теорія визначників n-го порядку.
- •Перестановки з n символів.
- •Підстановки n-го степеня.
- •Поняття і властивості визначника n-го порядку
- •Мінори і алгебраїчні доповнення визначника
- •Лема до теореми Лапласа. Теорема Лапласа.
- •Застосування теорії визначників до лінійних систем алгебраїчних рівнянь. Теорема Крамера та лема до неї
- •Векторний простір
- •Подальше вивчення векторного простору.
- •Поняття рангу системи векторів.
- •Поняття рангу матриці. Теорема про ранг матриці.
- •Загальна теорія лінійно-алгебраїчних рівнянь
- •Критерій сумісності лінійних алгебраїчних рівнянь
- •Критерій визначеності і невизначеності системи
- •Однорідна система рівнянь. Фундаментальна система розв'язків однорідної системи рівнянь.
- •Зв’язок між розв’язком неоднорідної і відповідної однорідної системи рівнянь.
- •Алгебра матриць
- •Множиння матриць.
- •Матриці обернені до даних. Умови їх існування.
- •Операції додавання і множення на число.
- •Скалярні матриці.
- •Операції над прямокутними матрицями.
- •Псевдообернені матриці.
- •Комплесні числа.
- •Побудова множини комплексних чисел.
- •Полярна система координат.
- •Тригонометрична форма комплексного числа. Операції множення та ділення в тригонометричній формі.
- •Операції піднесення до степеня
- •Операція здобуття кореняn-ого степеня з комплексного числа
- •Кореніn-ого степеня з одниці
- •Комплексно-спряжені числа
- •Нерівність трикутника
- •Література
Комплексно-спряжені числа
Означення.Числа виглядута
називаються комплексно-спряженими.
Очевидно, що сума і добуток комплексно-спряжених чисел
,
.
є дійними числами.
Відмітимо важливі для подальшого властивості.
Властивість 1.Число комплексно-спряжене до суми дорівнює сумі чисел спряжених до доданків.
.
Доведення.Нехай,
,
тоді
.
Тому
.
Аналогічно можна довести (пропонується зробити це самостійно):
;
;
.
Нерівність трикутника
Як і для дійсних чисел для комплексних чисел має місце нерівність трикутника
Доведення.Спочатку доведемо
геометрично, що.
Зобразимо на площині комплексні числа
та
,
побудуємо геометрично суму
.
Отримаємо трикутник
зі сторонами
Тоді, за нерівністю трикутника маємо
.
Отже, друга частина нерівності доведена.
Доведення першої частини нерівності зведемо до другої частини. Для цього запишемо очевиднунерівность.
,
Застосуємо до цієї суми доведену нерівність
.
Зауважимо, що
(довести самостійно). Тоді маємо нерівність
в області дійсних чисел
.
А тому,
,
що і треба було довести.
Якщо в нерівності трикутника покласти
,
то отримаємо і таку нерівність
.
Література
Ильин В.А. Аналитическая геометрия/В.А.Ильин, Э.Г.Позняк. – М.:Наука, 1971. – 232с.
Ильин В.А. Линейная алгебра/В.А.Ильин, Э.Г.Позняк. – М.:Наука, 1984. – 232с.
Завало С.Т. Курс алгебри. – К.: Вища шк., 1985. – 504с.
Александров П.С. Курс аналитической геометрии и линейной алгебры. – М.:Наука, 1979. – 512с.
Курош А.Г. Курс высшей алгебры. – М.:Наука, 1975. – 431с.
Моденов П.С. Аналитическая геометрия. – М.: Изд-во МГУ, 1969. – 670с.
Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – М.: Наука, 1984. – 320с.
Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. – М.: Гостехиздат, 1949. – 336с.
Тышкевич Р.И. Линейная алгебра и аналитическая геометрия/ Р.И.Тышкевич, А.С. Феденко. – Минск: Вышейшая школа, 1968. – 505с.
Проскуряков И.В. Сборник задач по линейной алгебре. – М.: Наука, 1984. – 336с.
Бурдун А.А. Сборник задач по алгебре и аналитической геометрии/ А.А.Бурдун, Е.А.Мурашко, М.М.Толкачев, А.С.Феденко. – Мн.: Універсітэцкае, 1999. – 302с.
Гетманцев В.Д. Лінійна алгебра і лінійне програмування. – К: Либідь, 2001. – 256с.
Гриньов Б.В. Аналітична геометрія./Б.В.Гриньов, І.К.Кириченко. – Харків: Гімназія, 2008. – 344с.
Гриньов Б.В. Вища алгебра./Б.В.Гриньов, І.К.Кириченко. – Харків: Гімназія, 2008. – 184с.
Гриньов Б.В. Векторна алгебра./Б.В.Гриньов, І.К.Кириченко. – Харків: Гімназія, 2008. – 164с.
Варех Н.В. Лабораторні роботи до курсу лінійної алгебри та геометрії/ Н.В.Варех, М.П.Д’яченко, Н.А.Лихолат, С.Д.Сотникова. – Д.: РВВ ДДУ, 1992. – 52с.
Варех Н.В. Методи обчислення визначників n-го порядку/Н.В.Варех, М.П.Д’яченко, В.Б.Круглушина. – Д.: РВВ ДДУ, 1995. – 28с.
Варех Н.В. Лінійні оператори/Н.В.Варех, М.П.Д’яченко. – Д.: РВВ ДДУ, 2003. – 28с.
Варех Н.В. Методические указания к самостоятельному изучению раздела «Многочлены от одной переменной»/ Н.В.Варех, Н.А.Лихолат, О.М.Ревин, В.Н.Трофимов. – Д.: РВВ ДДУ, 1989. – 32с.
Варех Н.В. Методические указания к самостоятельному изучению раздела «Плоскость»/ Н.В.Варех, Н.А.Лихолат, О.М.Ревин, В.Н.Трофимов. – Д.: РВВ ДДУ,. – 1992. – 32с.
Варех Н.В. Практикум із дисципліни «Алгебра та геометрія»/Н.В.Варех, М.П.Д’яченко. – Д.: РВВ ДНУ, 2005. – 48с.
Варех Н.В. Практикум із дисципліни «Алгебра та геометрія»/Н.В.Варех, М.П.Д’яченко. – Д.: РВВ ДНУ, 2007. – 76с.
Варех Н.В. Практикум із векторної алгебри/Н.В.Варех, Н.Л.Козакова. – Д.: РВВ ДНУ, 2007. – 52с.