
лаба / documents-export-2013-10-05 / Лабораторная работа 4 - решение задач в Exсel
.pdf
Лабораторная работа № 4
Тема: Решение задач в программе Microsoft Exel
Цель работы: ознакомиться с приёмами решения математических задач с использованием возможностей программы Microsoft Exel.
Задачи работы: решить задачи соответственно своему варианту.
Ход работы
Задание 1
Введем серию формул, зависящих от двух аргументов: х и у.
Присвоение имен. Сначала отведем для х к у две ячейки и дадим им для наглядности имена. Введем в ячейку А1 букву "х", а в ячейку А2 букву "у". Присвоим ячейкам В1 и В2 имена х и у: выделим В1, в окне ввода имени над столбцом А (в одной строке со строкой ввода) появится адрес В1, выделим его мышью и наберем букву х, нажмем клавишу Enter. Аналогично дадим ячейке В2 имя у. Поместим в В1 число 4, а в В2 число 3.
|
|
|
|
Задание 2 |
||||||||
Вариант 1 |
|
|
|
|
|
|
|
|
|
|
|
|
Требуется ввести в В4 формулу |
|
x 2 |
. |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
2x |
|
||||||||
5 + |
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|||
y2 + 3 |
|
|
|
|
|
|||||||
Вариант 2 |
|
|
|
|
|
|
|
|
|
|
|
|
Требуется ввести в С4 формулу arcsin |
x |
|
|
|
|
+ arctg y + 2 . |
||||||
|
|
|
|
|||||||||
x2 +1 |
||||||||||||
Вариант 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Требуется ввести в D4 формулу |
sin |
|
x |
|
|
+ cos y 2 . |
||||||
|
|
|||||||||||
x2 + н |
||||||||||||
|
|
|
|
Задание 3 |
||||||||
Вариант 1 |
|
|
|
|
|
|
|
|
|
|
|
|
В ячейке А1 записано число. |
Выяснить, |
принадлежит ли оно отрезку [a,b]. |
(использовать логические выражения)
Вариант 2
В ячейке А1 записано число. Выяснить, принадлежит ли оно одному из лучей на числовой оси: (-∞, 2) или (5, ∞).
Вариант 3
В ячейке А1 записано число. Выяснить, принадлежит оно отрезку [a,b] или [a,c]. (использовать логические выражения)
Задание 4
Вариант 1
Торговый агент получает процент от суммы совершенной сделки. Если объем сделки до 3000, то 5%; если объем до 10 000, то 2%; если выше 10 000, то 1.5%. Вычислите размер вознаграждения.
Вариант 2
В трех ячейках записаны числа. Если все они ненулевые, вернуть 1, в противном случае 0. Решить задачу с использованием только одной функции ЕСЛИ (без вложений).
Вариант 3
Дана таблица с колонками количество детей и зарплата. Нужно подсчитать налог с доходов (15%) с учетом льготы на каждого ребенка по 750 р.. Ставка налога и размер льготы записаны в ячейках B1 и D1 соответственно.
Задание 5
Вариант 1
Экзаменатор проверяет письменную работу, состоящую из пяти задач. За каждую задачу он проставляет оценку — целое число в диапазоне от 0 до 4. Иногда (в виде исключения) он может поставить нецелое число, например 3.5. Введите в А24:Е24 порядковые номера задач (от 1 до 5), в F24 - строку "Сумма". Экзаменатор вводит оценки в диапазон А25:Е25. В F25 автоматически должна вычисляться сумма оценок. При переходе к ячейке подсказка не выводится, при неверном вводе выводится предупреждение.
Вариант 2
Гражданин открыл счет в банке, вложив 1000 руб. Через каждый месяц размер вклада увеличивается на 1,2% от имеющейся суммы. Определить:
а) сумму вклада через 1,2, ..., 12 месяцев; б) прирост суммы вклада за первый, второй, ..., двенадцатый месяц.
Вариант 3
Дана таблица с числовой колонкой. Нужно определить, в какой из трех промежутков попадает каждое число: до 100, от 100 до 200, больше 200.

Задание 6
Вариант 1
Дан прямоугольный параллелепипед со сторонами а, b, с. Вычислить:
объем V= abc;
площадь поверхности S = 2(ab+bc+ac);
длину диагонали d = a2 + b2 + c2
|
|
|
|
c |
|
|
|
|
|
|
угол между диагональю и плоскостью основания = arctg |
|
|
|
|
|
|
|
; |
|
|
|
|
|
|
||||
|
|
a |
2 |
+ b |
2 |
|
|
|
|
|
|
|
|
|
|
|
|||
|
угол между диагональю и боковым ребром |
|
|
|
|
|
|
|
Вариант 2
В правильной четырехугольной пирамиде заданы: длина стороны основания а и высота h. Вычилить:
|
Объем V |
a2h |
; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
угол наклона бокового ребра к плоскости основания arctg |
h 2 |
|
; |
|||||||||||||
a |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
длину бокового ребра b |
h2 |
a2 |
; |
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
радиус описанного около пирамиды шара |
R |
2h2 |
a2 |
; |
|
|
|
|
||||||||
4h |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
угол наклона боковой грани к основанию |
arctg |
2h |
. |
|
|
|
|
|
||||||||
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
Вариант 3
В правильной треугольной пирамиде заданы: длина стороны основания а и высота h. Вычислить:
|
объем V = |
a2h |
3 |
|
; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
угол наклона бокового ребра к плоскости основания |
= arctg |
h 3 |
|
||||||||||||||||
a |
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
радиус описанного около пирамиды шара |
R = |
3h2 + α2 |
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
6h |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
угол наклона боковой грани к основанию |
β = arctg |
2h 3 |
|
|
|||||||||||||||
α |
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
радиус вписанного в пирамиду шара r = |
α |
3 |
tg |
β |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
6 |
2 |
|
|
|
|
|
|
|
|
|
Задание 7
1 Вариант
В ячейке В5 (см. рис) получить текст, состоящий из фамилии, имени и отчества сотрудника, разделенных пробелами.
|
A |
B |
1 |
Фамилия сотрудника |
|
2 |
Имя сотрудника |
|
3 |
Отчество сотрудника |
|
4 |
Фамилия, имя, отчество сотрудника |
|
2 Вариант
В таблице записаны 7-значные номера телефонов в виде XXXXXXX (например, 1234567) Получить эти номера в виде: а) X-YYY-ZZZ (например, 1-234-567); б) XXX-YY-ZZ (например, 123-45-67).
3 Вариант
В ячейку А2 записана строка символов. Если количество символов в строке меньше десяти, то требуется скопировать эту строку в ячейку С2, в противном случае в ячейку С2 скопировать первые десять символов, а в ячейку D2 – остальные символы строки.
Задание 8
1 Вариант
В ячейке В5 (см. рис.) получить текст, состоящий из фамилии и инициалов в виде Иванов н.и..
|
A |
B |
C |
1 |
|
|
|
2 |
Фамилия сотрудника |
|
|
3 |
Имя сотрудника |
|
|
4 |
Отчество сотрудника |
|
|
5 |
Фамилия и инициалы сотрудника |
|
|
6 |
|
|
|
2 Вариант
В ячейку В2 (см. рис.) вводится слово из восьми букв. В ячейках В4:В11 получить буквы этого слова, при условии, если такая буква не была указана ранее.
|
А |
В |
1 |
|
|
2 |
Исходное слово: |
Алгоритм |
3 |
Номер буквы: |
Буква |
4 |
1 |
А |
5 |
2 |
л |
6 |
3 |
г |
… |
… |
… |
11 |
8 |
м |

3 Вариант
Имеется 2 таблицы
Таблица 1 (пример)
Фамилия |
Оклад |
Иванов |
5000 |
Петров |
3000 |
Сидоров |
10000 |
Таблица 2 (пример)
Фамилия, инициалы |
Премия |
Иванов А.Б. |
есть |
Петров Б.В. |
нет |
Сидоров Г.В |
есть |
Требуется составить третью таблицу, содержащую фамилии сотрудников и итоговую зарплату (размер премии задается отдельно)
Фамилия Зарплата
Иванов
Петров
Сидоров
Задание 9
Вариант 1
В ячейку В2 (см. рис.) будет введен возраст первого человека, в ячейку ВЗ — второго человека. Необходимо в ячейке В4 получить ответ на вопрос, кто старше и на сколько лет — первый человек, второй или они одинакового возраста.
|
A |
B |
C |
D |
|
1 |
|
|
|
|
|
2 |
Возраст |
первого |
|
|
|
|
человека |
|
|
|
|
3 |
Возраст |
второго |
|
|
|
|
человека |
|
|
|
|
4 |
|
|
Старше |
|
человек |
5 |
|
|
на |
|
лет |
Указания по выполнению
Для того чтобы ответ не выводился, когда значения в ячейках В2 и ВЗ еще не заданы, используйте логическую функцию Епусто.
Вариант 2
Работа светофора для пешеходов запрограммирована следующим образом: начиная с начала каждого часа, в течение трех минут горит зеленый сигнал, затем в течение двух минут
— красный, в течение трех минут — опять зеленый и т. д. Дано вещественное число /, означающее время в минутах, прошедшее с начала очередного часа. Определить, сигнал какого цвета горит для пешеходов в этот момент.
Вариант 3
Имеется магазин, который дает скидки на оптовые закупки, причем процент скидки зависит от количества купленного товара. Требуется вычислить сумму скидки (в руб.) при вводе количества и цены купленного товара. При начислении скидки требуется руководствоваться таблицей следующего вида:
Количество |
Скидка, % |
до 100 шт |
5 |
от 100 до 200 |
10 |
от 200 до 300 |
15 |
выше 300 |
20 |
Значения в столбце «Скидка» могут быть изменены, в соответствии с этим меняется и сумма скидки.
Задание 10
Вариант 1
Дано целое число k (1 < k< 365). Определить, каким будет k-й день года: выходным (суббота и воскресенье) или рабочим, если 1 января в этом году — понедельник. Предусмотреть проверку правильности ввода значения k.
Вариант 2
Торговый агент получает вознаграждение в размере некоторой доли от суммы совершенной сделки: если объем сделки до 5000 руб., то в размере 5%; если выше — 7%. Введите в ячейку А2 текст объем сделки, в ячейку A3 текст объем вознаграждения. Объем сделки в рублях будет вводиться в ячейку В2. Получить в ячейке ВЗ размер вознаграждения.
Вариант 3
Имеется список товаров (не менее 12 шт.). В столбце А товарам, имеющимся в наличии автоматически присваиваются порядковые номера в порядке возрастания. (см. рис). Посчитать общую стоимость этих товаров. Найти порядковый номер товара с наименьшей стоимостью.
|
A |
B |
C |
D |
1 |
№ |
Товар |
Количество |
Цена |
2 |
|
стол |
|
1000 |
3 |
1 |
стул |
1 |
400 |
4 |
2 |
шкаф |
12 |
2000 |
5 |
|
тумба |
|
600 |
6 |
3 |
кровать |
1 |
3000 |