
- •Теория электромагнитного поля
- •1. Общие вопросы теории электромагнитного поля
- •1.1. Определение электромагнитного поля
- •1.2. Краткая характеристика математического аппарата теории эмп
- •1.3. Определения векторов напряжённости электрического поля и магнитной индукции
- •В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:
- •1.4. Определения векторов электрического смещения и напряжённости магнитного поля в вакууме
- •1.5. Первичные физические источники эмп
- •1.6. Электрическая поляризованность вещества. Намагниченность вещества
- •1.7. Общие определения векторов электрического смещения и напряжённости магнитного поля
- •1.8. Объёмная плотность заряда. Плотность тока
- •1.9. Упражнения в comsol Script
- •1.10. Уравнения эмп в интегральной форме
- •1.11. Уравнения эмп в дифференциальной форме (уравнения Максвелла) для неподвижных сред
- •1.12. Упражнения по анализу заданных полей векторов эмп с использованием уравнений эмп в дифференциальной форме
- •1.13. Соотношения между векторами поля и электрофизическими свойствами среды
- •Способы глобальной линеаризации уравнений материальной связи
- •1.14. Упражнения по построению графиков электрофизических характеристик материалов по справочным данным с помощью comsol Script
- •1.15. Энергия электромагнитного поля. Мощность тепловых потерь энергии при протекании токов проводимости. Мощность сторонних источников эмп
- •1.16. Упражнения по энергетическому анализу заданных полей векторов эмп с использованием comsol Script
- •1.17. Граничные условия для векторов эмп на поверхностях раздела сред. Понятие о поверхностном роторе и поверхностной дивергенции векторного поля
- •1.18. Закон сохранения заряда в дифференциальной и интегральной форме
- •1.19. Граничные условия для компонентов плотности тока на поверхностях раздела сред
- •1.20. Теорема Умова-Пойнтинга
- •1.21. Упражнения по анализу энергетических потоков в заданных полях векторов эмп с использованием comsol Script и теоремы Умова-Пойнтинга
- •2. Электростатическое поле
- •2.1. Определение электростатического поля
- •2.2. Законы электростатического поля в интегральной и дифференциальной форме. Линеаризованное уравнение материальной связи
- •2.3. Граничные условия для векторов электростатического поля на поверхностях раздела диэлектриков и на поверхностях проводников
- •2.4. Понятие о скалярном электрическом потенциале
- •2.5. Уравнение электростатики относительно скалярного электрического потенциала
- •2.6. Коэффициентная и генеральная формы уравнения электростатики в системе Comsol Multiphysics
- •2.7. Скалярная краевая задача электростатики. Типы граничных условий (гу) на границе расчётной области. Задание гу в системе Comsol Multiphysics
- •Если в расчетной области свободные заряды отсутствуют, то
- •2.8. Технология построения моделей электростатических полей в pde Modes, в электростатических прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •2.8.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.3. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.4. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •2.9. Энергия системы заряженных проводников
- •2.10. Технология расчёта энергии электростатического поля в моделях Comsol Multiphysics
- •2.11. Фундаментальное решение скалярного уравнения электростатики. Закон Кулона как следствие этого решения
- •2.12. Поле электрического диполя. Упражнение на составление вычислительного сценария расчёта такого поля в Comsol Script
- •В результате получим
- •Окончательно получим
- •Расчёт и визуализация поля электрического диполя в системе comsol Script
- •2.13. Поле бесконечно длинной заряженной оси
- •2.14. Упражнения по аналитическим расчётам параметров электростатических полей в бесконечно длинных коаксиальных системах проводников
- •2.15. Упражнения по моделированию электростатических полей в коаксиальных системах в comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Режимы и настройки
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Режимы и настройки
- •2.15.3. 2D Modeling в электростатическом прикладном режиме ядра comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Постпроцессорная обработка и визуализация
- •2.15.4. 2D Modeling в электростатическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Постпроцессорная обработка и визуализация
- •2.16. Поле системы двух параллельных разноимённо заряженных осей
- •2.17. Поле и ёмкость параллельных цилиндров с несовпадающими осями, находящихся один внутри другого
- •2.18. Упражнения по аналитическому расчёту и моделированию в comsol Multiphysics поля и ёмкости «коаксиального» кабеля со смещённой жилой
- •2.18.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.18.2. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •2.18.3. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма
- •3.2. Граничные условия для векторов электрического поля постоянного тока в проводящей среде на границах раздела сред
- •3.3. Аналогия между электрическим полем в проводящей среде и электростатическим полем в диэлектрике
- •3.4. Коэффициентная и генеральная формы уравнения математической физики относительно скалярного электрического потенциала. Краевая задача анализа постоянного электрического поля
- •3.5. Технология построения моделей постоянных электрических полей в проводящей среде в pde Modes, в электромагнитных прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •3.5.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.3. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.4. Моделирование в физическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •3.6. Упражнения по расчётам электрических полей растекания токов заземлителей
- •3.6.1. Упражнения по аналитическим расчётам
- •3.6.2. Моделирование в comsol Multiphysics
- •3.6.2.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.2. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.3. Моделирование в физическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Режимы и настройки
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
1.9. Упражнения в comsol Script
Задача 1.
Дано: Контур с электрическим током I в пространстве представляет собой периметр треугольника, декартовы координаты вершин которого заданы: x1, x2, x3, y1, y2, y3, z1, z2, z3. Здесь нижние индексы – номера вершин. Вершины пронумерованы в направлении протекания электрического тока.
Требуется составить функцию COMSOL Script, вычисляющую вектор дипольного магнитного момента контура. При составлении m-файла можно предполагать, что пространственные координаты измеряются в метрах, а ток – в амперах. Допускается произвольная организация входных и выходных параметров.
Решение.
Вектор площади треугольника в трёхмерном пространстве вычисляется по формуле
,
где 1x, 1y, 1z – орты декартовой системы координат.
Ниже приведён текст m-функции.
% m_dip_moment - вычисление магнитного дипольного момента треугольного контура с током в пространстве
% pm = m_dip_moment(tok,nodes)
% ВХОДНЫЕ ПАРАМЕТРЫ
% tok - ток в контуре;
% nodes - квадратная матрица вида [x1, x2, x3; y1, y2, y3; z1, z2, z3].' , в каждой строке которой записаны координаты соответствующей вершины.
% ВЫХОДНОЙ ПАРАМЕТР
% pm - матрица-строка декартовых компонентов вектора магнитного дипольного момента.
function pm = m_dip_moment(tok,nodes);
pm=tok*[det([ones(3,1) nodes(:,[2,3])]) det([ones(3,1) nodes(:,[3,1])]) det([ones(3,1) nodes(:,[1,2])])]/2;
% В последнем операторе вектор площади треугольника умножается на ток
Пример запуска разработанной m-функции:
C>> nodes=10*rand(3)
nodes =
9.5013 4.8598 4.5647
2.3114 8.913 0.18504
6.0684 7.621 8.2141
C>> pm=m_dip_moment(1,nodes)
pm =
13.442 20.637 -2.9692
В данном случае получилось PM = (13.4421x + 20.6371y - 2.96921z) Ам2, если ток в контуре равен 1 А.
Задача 2.
Дано: Контур с электрическим током I в пространстве представляет собойзамкнутую ломаную, декартовы координаты вершин которой записаны в матрицу размера n-by-3. Строка этой матрицы соответствует вершине, а столбец – пространственной координате (1 – x, 2 – y, 3 – z).Вершины пронумерованы в направлении протекания электрического тока.
Требуется составить последовательность операторовCOMSOL Script, которая вычисляет дипольный магнитный момент контура. При составленииm-файла можно предполагать, что пространственные координаты измеряются в метрах, а ток – в амперах. Допускается вызовm-функции, составленной в ходе решения предыдущей задачи.
Решение.
Магнитный момент многоугольного контура равен сумме магнитных моментов треугольных котуров с общей последней вершиной.
Ниже представлена последовательность команд, записанная в отдельный m-файл.
nodes=10*rand(8,3) % Случайный восьмиугольный контур
n=size(nodes,1); % Количество вершин контура
pm=[0 0 0];
for k=1:n-2,
pm=pm+m_dip_moment(1,nodes([k,k+1,n],:));
end
disp(['pm=' mat2str(pm,7)])
В результате выполнения получим следующий результат:
nodes =
3.1809 7.2101 2.1455
4.8293 0.1016 5.1546
5.9856 8.2901 5.8596
1.3420 5.8407 7.3951
4.2423 4.0685 3.9846
6.2839 7.7394 8.3424
7.8709 2.4111 5.4378
2.8876 2.3502 9.9686
pm=[-7.712363853827268, -14.980674597525798, -2.0853340323718648]
В данном случае получилось PM = (=[-7.71241x - 14.9811y - 2.08531z) Ам2, если ток в контуре равен 1 А.