
- •Теория электромагнитного поля
- •1. Общие вопросы теории электромагнитного поля
- •1.1. Определение электромагнитного поля
- •1.2. Краткая характеристика математического аппарата теории эмп
- •1.3. Определения векторов напряжённости электрического поля и магнитной индукции
- •В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:
- •1.4. Определения векторов электрического смещения и напряжённости магнитного поля в вакууме
- •1.5. Первичные физические источники эмп
- •1.6. Электрическая поляризованность вещества. Намагниченность вещества
- •1.7. Общие определения векторов электрического смещения и напряжённости магнитного поля
- •1.8. Объёмная плотность заряда. Плотность тока
- •1.9. Упражнения в comsol Script
- •1.10. Уравнения эмп в интегральной форме
- •1.11. Уравнения эмп в дифференциальной форме (уравнения Максвелла) для неподвижных сред
- •1.12. Упражнения по анализу заданных полей векторов эмп с использованием уравнений эмп в дифференциальной форме
- •1.13. Соотношения между векторами поля и электрофизическими свойствами среды
- •Способы глобальной линеаризации уравнений материальной связи
- •1.14. Упражнения по построению графиков электрофизических характеристик материалов по справочным данным с помощью comsol Script
- •1.15. Энергия электромагнитного поля. Мощность тепловых потерь энергии при протекании токов проводимости. Мощность сторонних источников эмп
- •1.16. Упражнения по энергетическому анализу заданных полей векторов эмп с использованием comsol Script
- •1.17. Граничные условия для векторов эмп на поверхностях раздела сред. Понятие о поверхностном роторе и поверхностной дивергенции векторного поля
- •1.18. Закон сохранения заряда в дифференциальной и интегральной форме
- •1.19. Граничные условия для компонентов плотности тока на поверхностях раздела сред
- •1.20. Теорема Умова-Пойнтинга
- •1.21. Упражнения по анализу энергетических потоков в заданных полях векторов эмп с использованием comsol Script и теоремы Умова-Пойнтинга
- •2. Электростатическое поле
- •2.1. Определение электростатического поля
- •2.2. Законы электростатического поля в интегральной и дифференциальной форме. Линеаризованное уравнение материальной связи
- •2.3. Граничные условия для векторов электростатического поля на поверхностях раздела диэлектриков и на поверхностях проводников
- •2.4. Понятие о скалярном электрическом потенциале
- •2.5. Уравнение электростатики относительно скалярного электрического потенциала
- •2.6. Коэффициентная и генеральная формы уравнения электростатики в системе Comsol Multiphysics
- •2.7. Скалярная краевая задача электростатики. Типы граничных условий (гу) на границе расчётной области. Задание гу в системе Comsol Multiphysics
- •Если в расчетной области свободные заряды отсутствуют, то
- •2.8. Технология построения моделей электростатических полей в pde Modes, в электростатических прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •2.8.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.3. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.8.4. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •2.9. Энергия системы заряженных проводников
- •2.10. Технология расчёта энергии электростатического поля в моделях Comsol Multiphysics
- •2.11. Фундаментальное решение скалярного уравнения электростатики. Закон Кулона как следствие этого решения
- •2.12. Поле электрического диполя. Упражнение на составление вычислительного сценария расчёта такого поля в Comsol Script
- •В результате получим
- •Окончательно получим
- •Расчёт и визуализация поля электрического диполя в системе comsol Script
- •2.13. Поле бесконечно длинной заряженной оси
- •2.14. Упражнения по аналитическим расчётам параметров электростатических полей в бесконечно длинных коаксиальных системах проводников
- •2.15. Упражнения по моделированию электростатических полей в коаксиальных системах в comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Режимы и настройки
- •Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Режимы и настройки
- •2.15.3. 2D Modeling в электростатическом прикладном режиме ядра comsol Multiphysics
- •Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •Постпроцессорная обработка и визуализация
- •2.15.4. 2D Modeling в электростатическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Постпроцессорная обработка и визуализация
- •2.16. Поле системы двух параллельных разноимённо заряженных осей
- •2.17. Поле и ёмкость параллельных цилиндров с несовпадающими осями, находящихся один внутри другого
- •2.18. Упражнения по аналитическому расчёту и моделированию в comsol Multiphysics поля и ёмкости «коаксиального» кабеля со смещённой жилой
- •2.18.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •2.18.2. Моделирование в электростатическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Постпроцессорная обработка и визуализация
- •2.18.3. Моделирование в электростатическом прикладном режиме Модуля Электромагнетизма
- •3.2. Граничные условия для векторов электрического поля постоянного тока в проводящей среде на границах раздела сред
- •3.3. Аналогия между электрическим полем в проводящей среде и электростатическим полем в диэлектрике
- •3.4. Коэффициентная и генеральная формы уравнения математической физики относительно скалярного электрического потенциала. Краевая задача анализа постоянного электрического поля
- •3.5. Технология построения моделей постоянных электрических полей в проводящей среде в pde Modes, в электромагнитных прикладных режимах ядра Comsol Multiphysics и Модуля Электромагнетизма
- •3.5.1. Моделирование в pde Modes (Coefficient Form) Навигатор моделей
- •Режимы и настройки
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.2. Моделирование в pde Modes (General Form) Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.3. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Режимы и настройки
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.5.4. Моделирование в физическом прикладном режиме Модуля Электромагнетизма Навигатор моделей
- •3.6. Упражнения по расчётам электрических полей растекания токов заземлителей
- •3.6.1. Упражнения по аналитическим расчётам
- •3.6.2. Моделирование в comsol Multiphysics
- •3.6.2.1. Моделирование в pde Modes (General Form) Навигатор моделей
- •Геометрическое моделирование
- •Физическое моделирование
- •Построение сетки конечных элементов
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.2. Моделирование в физическом прикладном режиме ядра comsol Multiphysics Навигатор моделей
- •Физическое моделирование
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
- •3.6.2.3. Моделирование в физическом прикладном режиме Модуля Электромагнетизма
- •Навигатор моделей
- •Режимы и настройки
- •Вычисление решения
- •Постпроцессорная обработка и визуализация
Геометрическое моделирование
Выполним команду меню Draw/ Specify Objects/ Circle. Раскроется диалоговое окно Circle. В строку редактирования Radius впишем число 5 (радиус оболочки 5 мм). Остальные параметры примем по умолчанию. Кнопкой OK закроем диалоговое окно. Опять раскроем диалоговое окно Circle. В строку редактирования Radius впишем число 1, в строку редактирования x впишем число 2.5. Остальные параметры примем по умолчанию. Это означает, что жилу мы смещаем вправо относительно геометрической оси оболочки на 2.5 мм, радиус жилы задали равным 1 мм. Кнопкой OK закроем диалоговое окно. Выделим оба созданных геометрических объекта клавишей Ctrl+A. На инструментальной панели рисования нажмём кнопку Difference. В результате будет создан композиционный геометрический объект, содержащий всю расчётную область. Для данной задачи моделирования нам никакие другие геометрические объекты не нужны.
Физическое моделирование
Установка параметров зон расчётной области
Выполним команду меню Physics/ Subdomain Settings (или нажмём клавишу F8). Развернётся диалоговое окно Subdomain Settings. Выделим зону 1. В строки редактирования Г впишем имена Dx, Dy. В строку редактирования F впишем число 0. Кнопкой OK закроем диалоговое окно.
Граничные условия
Клавишей F7 раскроем диалоговое окно Boundary Settings. Выделим границы 5, 6, 7, 8. В строку редактирования R закладки Coefficients впишем выражение –u+U. Это означает, что потенциал жилы примем равным переменной U. На остальных границах по умолчанию примем нулевое условие Дирихле (скалярный потенциал равен нулю). Кнопкой OK закроем диалоговое окно.
Построение сетки конечных элементов
Выполним команду меню Mesh/ Initialize Mesh. Будет построена сетка, состоящая из 838 конечных элементов. Теперь выполним команду меню Mesh/ Refine Mesh 1 раз. Будет построена сетка, состоящая из 3352 конечных элементов. Больше никакие действия предпринимать не будем, т.к. параметры сетки примем по умолчанию.
Вычисление решения
На главной инструментальной панели нажмём кнопку =. Решение займёт 0.281 с. В поле axes будет построен цветовой график распределения скалярного электрического потенциала.
Постпроцессорная обработка и визуализация
Клавишей F12 откроем диалоговое окно Plot Parameters. В закладке Surface откроем закладку Surface Data. В ниспадающем меню Predefined quantities выберем пункт u. Установим флажок Surface plot. В закладке Contour установим флажок Contour plot. В ниспадающем меню Predefined quantities выберем пункт u. В группе Contour color выберем цветовую палитру изолиний cool. В группе Contour levels включим радиокнопку Vector with isolevels. В соответствующую строку редактирования впишем выражение 0:0.5:10. Это означает, что изолинии будут проводиться в диапазоне от 0 до 10 В с шагом 0.5 В. Кнопкой OK закроем диалоговое окно. В результате в поле axes будет построен цветовой график распределения скалярного электрического потенциала с изолиниями (рис. 2.18.1.1).
Рис.
2.18.1.1. Цветовой график распределения
потенциала с изолиниями
По условию задачи нужно рассчитать также ёмкость кабеля на единицу длины. Для этого клавишей Ctrl+F экспортируем fem-структуру в COMSOL Script. Если последнего приложения в оперативной памяти нет, то оно запускается с установлением связи с приложением COMSOL Multiphysics.
В командном окне COMSOL Script выполним следующую последовательность команд.
C» format long
C» format compact
C» [ca0,ce0,cq0]=postinterp(fem,'ca0','ce0','cq0',[0;0])
ca0 =
0.04271530781856
ce0 =
0.04271538213775
cq0 =
0.04268881977418
Видно, что при численном расчёте более точно ёмкость вычисляется через энергию электрического поля, т.к. эта последняя величина рассчитывается через солидный интеграл. Заряд проводника рассчитывается через граничный интеграл, поэтому точность вычисления ёмкости через заряд оказывается хуже.